簡易檢索 / 詳目顯示

研究生: 蘇毓婷
Su, Yu-Ting
論文名稱: 含水柯石英單晶之振動光譜研究
Study of Vibrational Spectroscopy of Synthetic Hydrous Coesite
指導教授: 龔慧貞
Kung, Jennifer
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 73
中文關鍵詞: 含水柯石英羥基耦合機制傅立葉轉換紅外線光譜單晶X光繞射解析
外文關鍵詞: hydrous coesite, OH coupling mechanism, FTIR, SCXRD
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 莫約在30億至40億年前,地球水含量比現今多了兩倍以上,目前認為早期地球的水可能被蘊藏在地函之中。來自上部地函的擄獲岩內常發現結構中含有水(羥基)的矽酸鹽礦物,是探究地球內部水含量與水循環的重要窗口。主要礦物包含橄欖石、輝石或石榴子石等,羥基以缺陷型式參雜其中,因此被稱為名義上無水礦物(nominally anhydrous minerals,簡稱NAMs)。地球深部的水,深刻影響著地球動力學行為。例如軟流圈的形成;礦物含水與脫水機制引發隱沒帶地震。此外,亦造成礦物物理性質改變。前人研究指出含水橄欖石含水量增加地震波波速下降;單晶含水頑火輝石含水量增加熱傳導率下降,且平行晶軸c軸方向較a軸方向顯著。羥基耦合機制對礦物物理性質改變及造成礦物非均向性,影響地球物理觀測。釐清名義上無水礦物(NAMs)羥基耦合機制,可幫助釐清含水對地球物理觀測影響。
    名義上無水礦物羥基耦合機制利用光譜學搭配理論計算進行研究,然而由於上部地函礦物相(橄欖石、輝石或石榴子石等)化學成分與結構較為複雜,目前尚未為釐清光譜學中特徵峰指示羥基耦合於矽氧四面體或是陽離子多面體。因此本研究選定柯石英(Coesite)-單純[SiO4]2-架狀結構且在高壓下有水環境合成時有被觀察到[OH-]參入結構中,並藉由光譜學繼而釐清以上地函礦物相中[SiO4]2-與羥基耦合有關的特徵峰。
    過去研究指出柯石英羥基耦合與特徵峰關係,然而研究以偏光顯微鏡做為定向依據,並結合常壓及高壓傅立葉轉換紅外線光譜與單晶X光繞射結釐清羥基耦合。本研究則以單晶X光繞射做為晶體定向依據,並比較d(O…O)變化去探討羫基在含水柯石英中可能位置。實驗結果指示:(1)由於晶體本身的光軸與晶軸夾角存在一定的誤差範圍,以單晶X光繞射技術可做為晶體絕對定向依據,以判定羥基方向。(2)柯石英羥基拉伸振動模ν1、ν2a、ν3、ν4 、ν5與O5-H1···O5(ν1)、O3-H2···O3(ν2a)、O4-H3···O5(ν3)、O3-H4···O4(ν4)、O3-H5 ···O5(ν5)羥基振動相關,未來將提供理論計算釐清與矽氧四面體相關的羥基耦合。
    此外,值得注意的是本研究以Si-O-H起始原料合成含水柯石英,成功在4GPa環境中合成出含水量40ppm柯石英,降低其合成壓力。以該原料合成之含水柯石英,無在傅立葉轉換紅外線光譜觀察到新的羥基拉伸振動模,指示含水柯石英羥基耦合機制不受起始原料之不同鍵結環境影響。單晶X光繞射之柯石英晶體定向,除了協助本研究判定羥基方向,本研究亦利用偏振光拉曼散射光譜收取特定方向圖譜,作為快速判定方向的依據。

    NAMs have profound effects on physical properties such as electrical/thermal conductivity and elastic modulus. For example, the thermal conductivity of single-crystal orthoenstatite at ambient is more significant in the direction of parallel c-axis than in the direction of a-axis, so we can understand the effect of non-homogeneous on physical properties of minerals. The mineral phases in upper mantle are all silicate minerals, which are composed of a silicon-oxygen tetrahedral structure([SiO4]2-) and cationic polyhedra in different arrangements, and the complex structure and composition make it difficult to determine the hydroxyl bonding environment. Therefore, this study aims to understand the bonding environment of pure SiO2 high-pressure phase, Coesite, and then to clarify the vibrational modes related to the hydroxyl groups coupled with pure silica-oxygen tetrahedra in the above geomorphic mineral phases.
    In this study, SCXRD was used to provide precise crystal orientation. The OH position should be in O5-H1···O5(ν1)、O3-H2···O3(ν2a)、O4-H3···O5(ν3)、O3-H4···O4(ν4)、O3-H5···O5(ν5). Also, we suggest that 3520cm-1 belongs to ν2 rather than ν6c. Furthermore, we used Si-O-H starting material to synthesis hydrous coesite(40ppm) under 4GPa, reducing its synthesis pressure addition. Si-O-H starting material provides all the OH coupling mechanisms for hydrous coesite which indicates the OH coupling mechanism is not affected by different bonding environments in the starting material.

    摘要 I 英文延伸摘要 II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 前言 1 1.1柯石英(COESITE) 1 1.2含水柯石英羥基耦合機制與傅立葉轉換紅外線光譜文獻回顧 2 1.3研究方法 3 第二章 實驗方法 10 2.1起始原料合成 10 2.2大體積大壓力機合成 11 2.3單晶X光繞射結構解析 12 2.4振動光譜原理 13 2.4.1拉曼散射光譜儀器設置與分析方法 13 2.4.2傅立葉轉換紅外線光譜儀器設置與分析方法 13 2.5波長散佈分析實驗 14 2.6感耦合電漿體質譜實驗 14 2.7雷射剝蝕電感耦合電漿體質譜法 15 2.8二次離子質譜實驗 15 第三章 實驗結果 26 3.1含水柯石英高溫高壓合成 26 3.2 單晶X光繞射結構解析與定向 26 3.3拉曼散射光譜 27 3.3.1粉末與單晶非偏振光拉曼散射光譜 27 3.3.2單晶偏振光拉曼散射光譜 28 3.4羥基(OH)的振動行為 28 3.4.1非偏振光傅立葉轉換紅外線光譜 29 3.4.2偏振光傅立葉轉換紅外線光譜 29 3.5含水柯石英之羥基與硼濃度定量 30 第四章 討論 50 4.1起始原料與含水柯石英中含水量的關聯性 50 4.2拉曼光譜散射光譜 50 4.3含水柯石英之傅立葉轉換紅外線光譜 51 4.4探討羫基在含水柯石英中可能位置 52 4.5羫基耦合與應用於其他名義上無水礦物 52 第五章 總結 58 參考文獻 59 附錄 64

    Ackermann, L., Cemic, L., & Langer, K. (1983). Hydrogarnet substitution in pyrope: a possible location for “water” in the mantle. Earth and Planetary Science Letters, 62(2), 208-214. doi:10.1016/0012-821x(83)90084-5
    Angel, R. J., Shaw, C. S. J., & Gibbs, G. V. (2003). Compression mechanisms of coesite. Physics and Chemistry of Minerals, 30(3), 167-176. doi:10.1007/s00269-003-0303-9
    Balan, E., Blanchard, M., Yi, H. H., & Ingrin, J. (2013). Theoretical study of OH-defects in pure enstatite. Physics and Chemistry of Minerals, 40(1), 41-50. doi:10.1007/s00269-012-0544-6
    Bell, David R., & Rossman, George R. (1992). Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals. Science, 255(5050), 1391-1397. doi:10.1126/science.255.5050.1391
    Chang, Yun-Yuan, Hsieh, Wen-Pin, Tan, Eh, & Chen, Jiuhua. (2017). Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle. Proceedings of the National academy of Sciences, 114(16), 4078-4081. doi:10.1073/pnas.1616216114
    Deon, F., Koch-Muller, M., Hovelmann, J., Rhede, D., & Thomas, S. M. (2009). Coupled boron and hydrogen incorporation in coesite. European Journal of Mineralogy, 21(1), 9-16. doi:10.1127/0935-1221/2009/0021-1843
    Dobson, David P., Meredith, Philip G., & Boon, Stephen A. (2002). Simulation of Subduction Zone Seismicity by Dehydration of Serpentine. Science, 298(5597), 1407-1410. doi:10.1126/science.1075390
    Dong, Junjie, Fischer, Rebecca A., Stixrude, Lars P., & Lithgow‐Bertelloni, Carolina R. (2021). Constraining the Volume of Earth's Early Oceans With a Temperature‐Dependent Mantle Water Storage Capacity Model.
    Frigo, C., Stalder, R., & Ludwig, T. (2019). OH defects in coesite and stishovite during ultrahigh-pressure metamorphism of continental crust. Physics and Chemistry of Minerals, 46(1), 77-89. doi:10.1007/s00269-018-0987-5
    Hemley, RJ. (1987). Pressure dependence of Raman spectra of SiO2 polymorphs: a-quartz, coesite, and stishovite. High-pressure research in mineral physics, 347-359.
    Hua, F. T. S., Dera, P., & Kung, J. (2020). Compressional Behavior of Hydrous Orthoenstatite: Insight into the Nature of LVZ under Continental Plate. Minerals, 10(1), 15. doi:10.3390/min10010071
    Huang, Xiaoge, Xu, Yousheng, & Karato, Shun-ichiro. (2005). Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature, 434(7034), 746-749. doi:10.1038/nature03426
    Jung, H., & Green, H. W. (2004). Experimental faulting of serpentinite during dehydration: Implications for earthquakes, seismic low-velocity zones, and anomalous hypocenter distributions in subduction zones. International Geology Review, 46(12), 1089-1102. doi:10.2747/0020-6814.46.12.1089
    Koch-Muller, M., Dera, P., Fei, Y. W., Reno, B., Sobolev, N., Hauri, E., & Wysoczanski, R. (2003). OH- in synthetic and natural coesite. American Mineralogist, 88(10), 1436-1445. doi:10.2138/am-2003-1007
    Koch-Muller, M., Fei, Y., Hauri, E., & Liu, Z. (2001). Location and quantitative analysis of OH in coesite. Physics and Chemistry of Minerals, 28(10), 693-705. doi:10.1007/s002690100195
    Kurosawa, Shinichiro, Stearns-Kurosawa, Deborah J, Hidari, Noriko, & Esmon, Charles T. (1997). Identification of functional endothelial protein C receptor in human plasma. The Journal of clinical investigation, 100(2), 411-418. doi:10.1172/JCI119548
    Lager, G. A., Armbruster, T., & Faber, J. (1987). Neutron and X-ray diffraction study of hydrogarnet Ca3Al2(O4H4)3. American Mineralogist, 72(7-8), 756-765.
    Li, W, Lu, R, Yang, H, Prewitt, CT, & Fei, Y. (1997). Hydrogen in synthetic coesite crystals. Eos, 78, 736.
    Libowitzky, E. (1999). Correlation of O-H stretching frequencies and O-H center dot center dot center dot O hydrogen bond lengths in minerals. Monatshefte Fur Chemie, 130(8), 1047-1059. doi:10.1007/s007060050263
    Liu, X., Ma, Y. L., He, Q., & He, M. Y. (2017). Some IR features of SiO4 and OH in coesite, and its amorphization and dehydration at ambient pressure. Journal of Asian Earth Sciences, 148, 315-323. doi:10.1016/j.jseaes.2017.03.016
    Mao, Jincheng, Yang, Xiaojiang, Wang, Dingli, Li, Yongming, & Zhao, Jinzhou. (2016). A novel gemini viscoelastic surfactant (VES) for fracturing fluids with good temperature stability. RSC advances, 6(91), 88426-88432. doi:10.1039/C6RA17823E
    Miao, Y. F., Pang, Y. W., Ye, Y., Smyth, J. R., Zhang, J. F., Liu, D., . . . Zhu, X. (2019). Crystal Structures and High-Temperature Vibrational Spectra for Synthetic Boron and Aluminum Doped Hydrous Coesite. Crystals, 9(12), 18. doi:10.3390/cryst9120642
    MIYAGI, ISOJI, & YURIMOTO, Hisayoshi. (1995). Water content of melt inclusions in phenocrysts using secondary ion mass spectrometer. Bulletin of the Volcanological Society of Japan, 40(5), 349-355.
    Mosenfelder, J. L. (2000). Pressure dependence of hydroxyl solubility in coesite. Physics and Chemistry of Minerals, 27(9), 610-617. doi:10.1007/s002690000105
    Nesse, W. (1987). Introduction to optical mineralogy. Applied Optics, 26(18), 3739.
    Pankrath, R. (1991). Polarized IR spectra of synthetic smoky quartz. Physics and Chemistry of Minerals, 17(8), 681-689.
    Prechtel, F., & Stalder, R. (2010). FTIR spectroscopy with a focal plane array detector: A novel tool to monitor the spatial OH-defect distribution in single crystals applied to synthetic enstatite. American Mineralogist, 95(5-6), 888-891. doi:10.2138/am.2010.3497
    Ramsdell, Lewis S. (1955). The crystallography of “coesite”. American Mineralogist: Journal of Earth and Planetary Materials, 40(11-12), 975-982.
    Ringwood, A. E. (1991). PHASE-TRANSFORMATIONS AND THEIR BEARING ON THE CONSTITUTION AND DYNAMICS OF THE MANTLE. Geochimica Et Cosmochimica Acta, 55(8), 2083-2110. doi:10.1016/0016-7037(91)90090-r
    Sclar, C. B., Carrison, L. C., & Schwartz, C. M. (1962). Optical Crystallography of Coesite. American Mineralogist, 47(11-1), 1292-+.
    Shatskiy, Anton, Yamazaki, Daisuke, Borzdov, Yuriy M, Matsuzaki, Takuya, Litasov, Konstantin D, Cooray, Titus, . . . Katsura, Tomoo. (2010). Stishovite single-crystal growth and application to silicon self-diffusion measurements. American Mineralogist, 95(1), 135-143.
    Smyth, J. R., Swope, R. J., & Pawley, A. R. (1995). H in rutile-type compounds: II. Crystal chemistry of Al substitution in H-bearing stishovite. American Mineralogist, 80(5-6), 454-456. doi:10.2138/am-1995-5-605
    Thomas, S. M., Koch-Muller, M., Reichart, P., Rhede, D., Thomas, R., Wirth, R., & Matsyuk, S. (2009). IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs. Physics and Chemistry of Minerals, 36(9), 489-509. doi:10.1007/s00269-009-0295-1
    Wei, M. X., Liu, C. H., Lee, H., Lee, B. W., Hsu, C. H., Lin, H. P., & Wu, Y. C. (2020). Synthesis of High-Performance Photonic Crystal Film for SERS Applications via Drop-Coating Method. Coatings, 10(7). doi:10.3390/coatings10070679
    Xu, Yousheng, Poe, Brent T, Shankland, Thomas J, & Rubie, David C. (1998). Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions. Science, 280(5368), 1415-1418.
    Yan, W., Zhang, Y. Y., Ma, Y. L., He, M. Y., Zhang, L. F., Sun, W. D., . . . Liu, X. (2021). Water in coesite: Incorporation mechanism and operation condition, solubility and P-T dependence, and contribution to water transport and coesite preservation. Geoscience Frontiers, 12(1), 313-326. doi:10.1016/j.gsf.2020.05.007
    Yoshino, Takashi, Manthilake, Geeth, Matsuzaki, Takuya, & Katsura, Tomoo. (2008). Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature, 451(7176), 326-329. doi:10.1038/nature06427
    花柏榕, 簡淑櫻, 龔慧貞, & 王雁賓. (2012). 探索物質在極限環境之研究-大體積壓力機簡介. 科儀新知(189), 83-91.
    莊勝智. (2021). 以時間域熱反射率(TDTR)方式量測單晶直輝石熱傳導率及其應用. (地球科學系), 成功大學, Retrieved from http://ir.lib.ncku.edu.tw/handle/987654321/203928

    無法下載圖示 校內:2026-08-03公開
    校外:2026-08-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE