| 研究生: |
許晁瑋 Hsu, Chao-Wei |
|---|---|
| 論文名稱: |
奈米磊晶成長三五族化合物半導體於奈米圖案化矽基板 Nanoepitaxy of III–V epi–layer onto nanopatterned and nanoscale stripe patterned Si substrate |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 奈米磊晶 、奈米條紋圖案 、幾何奈米圖案 、三五族化合物半導體材料 、奈米鰭狀結構 、有機金屬氣相磊晶。 |
| 外文關鍵詞: | Nanoepitaxy, Nanoscale stripe pattern, Geometric nanopattern, III-V materials, Nanofins, Metal–organic vapor–phase epitaxy. |
| 相關次數: | 點閱:90 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討利用有機金屬氣相磊晶方法,將奈米結構之砷化鎵與砷化銦化合物半導體選擇性成長於具有二氧化矽之奈米圖案化矽基板。以理論模型推測,隨著圖案化矽基板的圖案大小縮減至奈米尺寸,有助於減輕磊晶層之應力累積並且降低磊晶層的缺陷密度。以晶體結構推測,磊晶層的差排缺陷容易沿著最低能量晶格平面堆疊。因此,我們可將磊晶層成長於奈米圖案之矽基板,並配合奈米尺寸的二氧化矽圖案來降低磊晶層缺陷密度。以實驗結果驗證,砷化鎵磊晶成長於55奈米二氧化矽圓孔陣列之矽基板,可得到蝕刻缺陷密度約為每平方公分 3.3 × 10^5 的磊晶表面。在結晶品質分析方面,相較於磊晶成長於傳統平面矽基板,我們利用55奈米二氧化矽圓孔陣列之矽基板,可將X光繞射儀與光激發螢光量測圖譜的半高全寬值可分別降低39.6 % 與 31.4 %。在二氧化矽圖案的立體幾何形狀方面,相較於方形二氧化矽圖案,我們利用凸狀二氧化矽圖案可進一步降低磊晶層的聚合缺陷,並可進一步降低11.5 % 的X光繞射圖譜之半高全寬值。
我們也將砷化鎵與砷化銦成長於奈米條紋圖案化矽基板。經由蝕刻缺陷製備來分析磊晶表面缺陷密度。相較於砷化鎵磊晶成長於傳統平面矽基板每平方公分高達109的蝕刻缺陷密度,我們將磊晶層成長於奈米條紋圖案化矽基板其磊晶層表面則幾乎沒有蝕刻缺陷產生。經由穿遂式電子顯微鏡分析驗證,我們利用深寬比大於2.04的奈米條紋圖案化基板,幾乎可將全部缺陷侷限於凹槽之中。此外,我們將砷化銦成長於奈米條紋圖案化矽基板也可得到幾乎沒有蝕刻缺陷的磊晶層表面。經由繞射圖譜分析,可得到砷化鎵與砷化銦磊晶層的晶格長度數值分別為5.63 Å 與6.04 Å。此晶格長度數值接近未受應力之砷化鎵與砷化銦材料的晶格常數數值。此結果也應證了利用奈米尺寸圖案化矽基板有助於減輕磊晶層之應力累積。
此外,我們在幾乎無裂痕的磊晶層表面上研製金屬–半導體–金屬型紫外光檢測器。在偏壓5伏特時,其暗電流為1.5×10^-11 安培,其紫外光與可見光的抑制電流比為1479。
GaAs and InAs are grown on geometric nanopatterned and nanoscale stripe patterned Si substrates with SiO2 as a mask by metal–organic vapor–phase epitaxy. Theoretical models suggest the possibility of strain relief and dislocation reduction via a decrease in the initial epitaxial areas to the nanoscale regime. Threading dislocations, which are stacked on the lowest–energy facet plane, are trapped by the SiO2 patterns, reducing the number of dislocations. For GaAs on a 55–nm round–hole patterned Si substrate with SiO2 as a mask, the etching pit density of the GaAs surface is about 3.3 × 10^5 cm^-2. Compared with the full width at half maximum measurement (FWHM) from X–ray diffraction (XRD) ω/2θ scans patterns and photoluminescence spectra of GaAs on a planar Si (001) substrate, those of GaAs on the 55–nm round–hole patterned Si substrate are reduced by 39.6 % and 31.4 %, respectively. The use of 70–nm–wide SiO2 convex–top patterns can suppress the coalescence dislocations of the epi–layer and lead to a further decrease the FWHM values of the XRD ω/2θ scan patterns by 11.5 % compared to those obtained with 70–nm–wide rectangular–top SiO2 patterns.
Compared with the conventional planar Si substrate, depositing the epi–layers onto nanoscale stripe patterned Si substrates decreases the dislocation density from about 109 cm-2 to almost zero. With the aspect ratio increased from 0.44 to 2.04, the etching defect pit density can be significantly decreased. Almost etching–pit–free surfaces of GaAs and InAs nanofins are achieved using nanoscale stripe patterned Si (001). The lattice constants measured from the GaAs and InAs nanofins are 5.63 Å and 6.04 Å, respectively, which are similar to those of natural GaAs and InAs.
An ultraviolet metal–semiconductor–metal photodetector was prepared on an almost crack–free epi–layer surface. With a 5–V applied bias, the UV–to–visible rejection ratio was estimated to be 1479 and the measured leakage current was 1.5×10^-11 A.
References
Chapter 1
[1.1] S. M. Sze and K. K. Ng, “Physicals of Semiconductor Devices”, 3rd edition, John Wiley & Sons. Inc., 2007.
[1.2] J. B. D. Soole and H. Schumacher, “InGaAs metal–semiconductor–metal photodetectors for long wavelength optical communications”, IEEE J. Quantum Electron., vol. 27, no. 3, pp. 737–752, Mar. 1991.
[1.3] Y. S. Lin, W. C. Hsu, and C. S. Yang, “Low–leakage current and high–breakdown voltage GaAs–based heterostructure field–effect transistor with In0.5(Al0.66Ga0.34)0.5P Schottky layer,” Appl. Phys. Lett., vol. 75, no. 22, 3551–3553, Oct. 1999.
[1.4] A. Ohtake, “Surface reconstructions on GaAs(001),” Surf. Sci. Rep., vol. 63, no. 7, pp. 295–327, July 2008.
[1.5] R. D. Bringans, D. K. Biegelsen, and L. E. Swartz, “Atomic–Step rearrangement on Si(100) by interaction with arsenic and the implication for GaAs–on–Si epitaxy,” Phys. Rev. B, vol. 44, no. 7 , pp. 3054–3063, Aug. 1991.
[1.6] R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys., vol. 58, no. 1, pp. 374–381, Feb. 1985.
[1.7] W. I. Wang, “Molecular beam epitaxial growth and material properties of GaAs and AIGaAs on Si (100),” Appl. Phys. Lett., vol. 44, no. 12, pp. 1149–1151, Mar. 1984.
[1.8] R. Fischer, N. Chand, W. Kopp, H. Morkoç, P. Erickson, and R. Youngman, “GaAs bipolar transistors grown on (100) Si substrates by molecular beam epitaxy,” Appl. Phys. Lett., vol. 47, no. 4, pp. 397–399, Jun. 1985.
[1.9] S. M. Ting and E. A. Fitzgerald, “Metal–organic chemical vapor deposition of single domain GaAs on Ge/GeXSi1−X/Si and Ge substrates,” J. Appl. Phys., vol. 87, no. 5, pp. 2618–2628, Nov. 2000.
[1.10] J. H. Merwe, “Crystal Interfaces. Part II. Finite Overgrowths,” J. Appl. Phys., vol. 34, no. 1, pp. 123–127, Jul. 1963.
[1.11] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers misfit dislocations,” J. Cryst. Growth, vol. 27, no. 1, pp. 118–125, Jan. 1974.
[1.12] T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Optic. Express, vol. 19, no. 12, pp. 11381-11386, May 2011.
[1.13] D. W. Shaw, “GaAs on Si: progress and promise,” IEEE Trans. Electron Devices, vol. 35, no. 12, pp. 2428–2429, Dec 1988.
[1.14] E. Suhir, “Stresses in bi–metal thermostats,” J. Appl. Mech., vol. 53, no. 3, pp. 657–660, Sep. 1986.
[1.15] S. M. Hu, “Stress–related problems in silicon technology,” J. Appl. Phys., vol. 70, no. 6, pp. R53–R80, May 1991.
[1.16] M. Yamaguchi, “Dislocations density reduction in heteroepitaxial III–V compound films on Si substrates for optical devices,” J. Mater. Res., vol. 6, no. 2, pp. 376–384, Feb. 1991.
Chapter 2
[2.1] H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, “Single–crystal gallium arsenide on insulating substrates,” Appl. Phys. Lett., vol. 12, no. 4, pp. 156–159, Feb 1968.
[2.2] H. P. Maruskam and J. J. Tietjen, “The preparation and properties of vapor–deposited single–crystal–line GaN,” Appl. Phus. Lett., vol. 15, no. 10, pp. 327–329, Nov. 1969.
[2.3] H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, “The use of metal organics in the preparation of semiconductor materials,” J. Electrochem. Soc., vol. 118, no. 11, pp. 1864–1868, Nov. 1971.
Chapter 3
[3.1] D. L. Mathine, “The integration of III–V optoelectronics with silicon circuitry,” IEEE J. Sel. Top. Quantum Electron., vol. 3, no. 3, pp. 952–959, Jun. 1997.
[3.2] X.–Y. Bao, C. Soci, D. Susac, J. Bratvold, D. P. R. Aplin, W. Wei, C.–Y. Chen, S. A. Dayeh, K. L. Kavanagh, and D. Wang, “Heteroepitaxial growth of vertical GaAs nanowires on Si (111) substrates by metal–organic chemical vapor deposition,” Nano Lett., vol. 8, no. 11, pp. 3755–3760, Sep. 2008.
[3.3] R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, “Benchmarking nanotechnology for high–performance and low–power logic transistor applications,” IEEE Trans. Nanotechnol., vol. 4, no. 2, pp. 153–158, Mar. 2005.
[3.4] C. Soci, X. Y. Bao, D. P. R. Aplin, and D. Wang, “A systematic study on the growth of GaAs nanowires by metal–organic chemical vapor deposition,” Nano Lett., vol. 8, no. 12, pp. 4275–4282, Sep. 2008.
[3.5] H. Yonezu, “Control of structural defects in group III–V–N alloys grown on Si,” Semicond. Sci. Technol., vol. 17, no.8, 762–768, Jul. 2002.
[3.6] S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys., vol. 68, no. 7, pp. R31–R58, Oct. 1990.
[3.7] S. C. Jain, M. Willander, and H. Maes, “Stresses and strains in epilayers, stripes and quantum structures of III–V compound semiconductors,” Semicond. Sci. Technol., vol. 11, no. 5, pp. 641–671, Jan. 1996.
[3.8] Y. B. Bolkhovityanov and O. P. Pchelyakov, “GaAs epitaxy on Si substrates: modern status of research and engineering,” Phys. Usp., vol. 51, no. 5, pp. 437–456, Jan. 2008.
[3.9] A. Georgakilas, P. Panayotatos, J. Stoemenos, J.–L. Mourrain, and A. Christou, “Achievements and limitations in optimized GaAs films grown on Si by molecular–beam epitaxy,” J. Appl. Phys., vol. 71, no. 6, pp. 2679–2701, Mar. 1992.
[3.10] F. Y. Huang, “Theory of strain relaxation for epitaxial layers grown on substrate of a finite dimension,” Phys. Rev. Lett., vol. 85, no. 4, pp. 784–787, Jul. 2000.
[3.11] D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials”, J. Appl. Phys., vol. 85, no. 9, pp. 6492–6496, May 1999.
[3.12] J. Petruzzello and M. R. Leys, Effect of the sign of misfit strain on the dislocation structure at interfaces of heteroepitaxial GaAsXP1-X films, Appl. Phys. Lett., vol. 53, no. 24, pp. 2414-2416, Dec. 1988.
[3.13] S. Luryi and E. Suhir, “New approach to the high quality epitaxial growth of lattice mismatched materials,” Appl. Phys. Lett., vol. 49, no. 3a,pp. 140–142, May. 1986.
[3.14] Y. Takano, M. Hisaka, N. Fujii, K. Suzuki, K. Kuwahara, and S. Fuke, “Reduction of threading dislocations by InGaAs interlayer in GaAs layers grown on Si substrates,” Appl. Phys. Lett., vol. 73, no. 20, pp. 2917–2919, Nov. 1998.
[3.15] N. Hayafuji, M. Miyashita, T. Nishimura, K. Kadoiwa, H. Kumabe, and T. Murotani, “Effect of employing positions of thermal cyclic annealing and strained–layer superlattice on defect reduction in GaAs–on–Si,” Jpn. J. Appl. Phys., vol. 29, no. 11, pp. 2371–2375, Nov 1990.
[3.16] G. Vanamu, A. K. Datye, R. Dawson, and S. H. Zaidi, “Growth of high–quality GaAs on Ge/Si1−xGex on nanostructured silicon substrates,” Appl. Phys. Lett., vol. 88, no. 25, pp. 251909–1–3, Jun. 2006.
[3.17] J. A. Carlin, S. A. Ringel, A. Fitzgerald, and M. Bulsara, “High–lifetime GaAs on Si using GeSi buffers and its potential for space photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 66, no. 1, pp. 621–630, Feb. 2001.
[3.18] K. Ishida, M. Akiyama, and S. Nishi, “Misfit and treading dislocations in GaAs layers grown on Si substrates by MOCVD,” Jpn. J. Appl. Phys., vol. 26, no. 3, pp. L163–L165, Feb. 1987.
[3.19] F. M. Morales, R. García, S. I. Molina, A. Aouni, P. A. Postigo, and C. G. Fonstad, “Microstructural improvements of InP on GaAs (001) grown by molecular beam epitaxy by in situ hydrogenation and post growth annealing,” Appl. Phys. Lett., vol. 94, no. 4, pp. 041919–1–3, Jan. 2009.
[3.20] H. Usui, H. Yasuda, and H. Mori, “Morphology and lattice coherency in GaAs nanocrystals grown on Si (100) substrate,” Appl. Phys. Lett., vol. 89, no. 17, pp. 173127–1–3, Oct. 2006.
[3.21] G. Wang, R. Loo, E. Simoen, L. Souriau, M. Caymax, M. M. Heyns, and B. Blanpain, “A model of threading dislocation density in strain–relaxed Ge and GaAs epitaxial films on Si (100),” Appl. Phys. Lett., vol. 94, no. 10, pp. 102115–1–3, Mar. 2009.
[3.22] G. Wang, M. R. Leys, R. Loo, O. Richard, H. Bender, N. Waldron, G. Brammertz, J. Dekoster, W. Wang, M. Seefeldt, M. Caymax, and M. M. Heyns, “Selective area growth of high quality InP on Si (001) substrates,” Appl. Phys. Lett., vol. 97, no. 12, pp. 121913–1–3, Sep. 2010.
[3.23] S. F. Cheng, L. Gao, R. L. Woo, A. Pangan, G. Malouf, M. S. Groorsky, K. L. Wang, and R. F. Hicks, “Selective area metalorganic vapor–phase epitaxy of gallium arsenide on silicon,” J. Crystl. Growth, vol. 310, no. 3, pp. 562–569, Feb. 2008.
[3.24] R. M. Lum, J. K. Klingert, B. A. Davidson, and M. G. Lamont, “Improvements in the heteroepitaxy of GaAs on Si,” Appl. Phys. Lett., vol. 51, no.1, pp. 36–38, May 1987.
[3.25] J. Z. Li, J. Bai, C. Major, M. Carrol, A. Lochetefeld, and Z. Shellenbarger, “Defect reduction of GaAs/Si epitaxy by aspect ratio trapping,” J. Appl. Phys., vol. 103, no. 10, pp. 106102–1–3, May 2008.
[3.26] G. Landa, R. Carles, C. Fontaine, E. Bedel, and A. Muñoz–Yagüe, “Optical determination of strains in heterostructures: GaAs/Si as an example,” J. Appl. Phys., vol. 66, no. 1, pp. 196, Feb. 1989.
[3.27] Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, “Growth of highly tensile–strained Ge on relaxed InGaAs by metal–organic chemical vapor deposition,” J. Appl. Phys., vol. 104, no.8, pp. 084518–1–3, Oct. 2008.
[3.28] K. S. Kim, G. M. Yang, H. W. Shim, K. Y. Lim, E. –K. Suh, and H. J. Lee, “Photoluminescence characterization of biaxial tensile strained GaAs,” J. Appl. Phys., vol. 82, no. 10, pp. 5103–5106, Aug. 1997.
[3.29] J. E. Fouquet, R. R. Saxena, and G. A. Patterson, “Near–infrared photoluminescence of high–resistivity epitaxial GaAs and InP and of epitaxial GaAs on Si,” IEEE J. Quantum. Electron., vol. 25, no. 5, pp. 1025 –1034, May 1989.
[3.30] C. Rehnstedt, T. Mårtensson, C. Thelander, L. Samuelson, and L. –E. Wernersson, “Vertical InAs nanowire wrap gate transistors on Si substrates,” IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 3037–3041, Nov. 2008.
[3.31] K. Blekker, B. Münstermann, A. Matiss, Q. T. Do, I. Regolin, W. Brockerhoff, W. Prost, and F. J. Tegude, “High–frequency measurements on InAs nanowire field–effect transistors using coplanar waveguide contacts,” IEEE Trans. Nanotechnol., vol. 9, no. 4, pp. 432–437, Jul. 2010.
[3.32] Z. Zhao. Z. Hao, K. Yadavalli, K. L. Wang, and A. P. Jacob, “Optical properties of InAs quantum dots grown on patterned Si with a thin GaAs buffer layer,” Appl. Phys. Lett., vol. 92, no. 8, pp. 083111–1–3, Feb. 2008.
[3.33] S. Datta, G. Dewey, J. M. Fastenau, M. K. Hudait, D. Loubychev, W. K. Liu, M. Radosavljevic, W. Rachmady, and R. Chau, “Ultrahigh–Speed 0.5 V Supply Voltage In0.7Ga0.3As Quantum–Well Transistors on Silicon Substrate,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 685–687, Aug. 2007.
[3.34] T. M. Schmidt, J. F. Justo, and A. Fazzio, “Stacking fault effects in pure and n–type doped GaAs,” Appl. Phys. Lett., vol. 78, no. 7, pp. 907–909, Dec. 2001.
[3.35] J. Jasinski, Y. Chen, J. Washburm, Z. Liliental–Weber, H. H. Tan, C. Jagadish, and M. Kaminska, “Recrystallization of high energy As–implanted GaAs studied by transmission electron microscopy,” Appl. Phys. Lett., vol. 68, no. 11, pp. 1501–1503, Mar. 1996.
[3.36] M. Wiesner, W. M. Schulz, C. Kessler, M. Reischle, S. Metzner, F. Bertram, J. Christen, R. Roßbach, M. Jetter1, and P. Michler, “Single-photon emission from electrically driven InP quantum dots epitaxially grown on CMOS-compatible Si(001),” Nanotechnol., vol. 23, no.33, pp. 335201–1-6, Jul. 2012.
[3.37] S. Jha, X. Song, S. E. Babcock, T. F. Kuech, D. Wheeler, B. Wu, P. Fay, and A. Seabaugh, “Growth on InAs on Si substrates at low temperatures using metalorganic vapor phase epitaxy,” J. Crystl. Growth, vol. 310, pp. 4772–4775, Jul. 2008.
[3.38] P. Caroff, M. Jeppsson, D. Wheeler, M. Keplinger, B. Mandl, J. Stangl, A. Seabaugh, G. Bauer, and L. E. Wernersson, “InAs film grown on Si(111) by metal organic vapor phase epitaxy,” J. Phys: Conf. Seri., vol. 100, no. 4, May 2008.
[3.39] H. Huang, X. Ren, X. Ye, J. Guo, O. Wang, Y. Yang, S. Cai, and Y. Huang, “Growth of stacking–faults–free zinc blende GaAs nanowires on Si substrate by using AlGaAs/GaAs buffer layers,” Nano Lett., vol. 10, pp. 64–68, Dec. 2010.
[3.40] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Fabrication and characterization of low defect density GaN using facet–controlled epitaxial lateral overgrowth (FACELO),” J. Crystl. Growth, vol. 221, pp. 316–326, Dec. 2000.
[3.41] G. Suryanarayanan, A. A. Khandeker, T. F. Kuech, and S. E. Babcock, “Microstructure of lateral expiaxial overgrown InAs on (100) GaAs substrates,” Appl. Phys. Lett., vol. 83, no. 10, pp. 1977–1979, Sep. 2003.
[3.42] S. S. Yi, D. M. Hansen, C. K. Inoki, D. L. Harris, T. S. Kuan, and T. F. Kuech, “Lateral epitaxal overgrowth of GaSb on GaSb and GaAs substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 77, no. 6, pp. 842–844, Aug. 2000.
[3.43] L. Botha, P. Shamba, and J. R. Botha, “Electrical characterization of InAs thin film,” Phys. Stat. Sol. (c), vol. 5, no. 2, pp. 620–622, Jan. 2008.
[3.44] S. A. Dayeh, D. Susac, K. L. Kavanagh, E. T. Yu, and D. Wang, “Structural and room–temperature transport properties of zinc blende and wurtzite InAs nanowires,” Adv. Funct. Mater., vol. 19, no. 13, pp. 2102–2018, May 2009.
Chapter 4
[4.1] G. E. Moore, “Cramming more components onto integrated circuits,” Electron., vol. 38, no. 1, pp. 114–117, Apr. 1965.
[4.2] M. Yamaguchi, “Dislocations density reduction in heteroepitaxial III–V compound films on Si substrates for optical devices,” J. Mater. Res., vol. 6, no. 2, pp. 376–384, Feb. 1991.
[4.3] H. Yonezu, “Control of structural defects in group III–V–N alloys grown on Si,” Semicond. Sci. Technol., vol. 17, no. 8, pp. 762–768, Aug. 2002.
[4.4] S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys., vol. 68, no. 7, pp. R31–R58, Oct. 1990.
[4.5] N. Hayafuji, M. Miyashita, T. Nishimura, K. Kadoiwa, H. Kumabe, and T. Murotani, “Effect of employing positions of thermal cyclic annealing and strained–layer superlattice on defect reduction in GaAs–on–Si,” Jpn. J. Appl. Phys., vol. 29, no. 11, pp. 2371–2375, Nov. 1990.
[4.6] Y. Takano, M. Hisaka, N. Fujii, K. Suzuki, K. Kuwahara, and S. Fuke, “Reduction of threading dislocations by InGaAs interlayer in GaAs layers grown on Si Substrates,” Appl. Phys. Lett., vol. 73, no. 20, pp. 2917–2919, Nov. 1998.
[4.7] S. C. Jain, M. Willander, and H. Maes, “Stresses and strains in epilayers, stripes and quantum structures of III–V compound semiconductors,” Semicond. Sci. Technol., vol. 11, no. 5, pp. 641–671, Jan. 1996.
[4.8] K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui, “Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111) substrate,” Nanotechnol., vol. 20, no.14, pp. 145302–1-8, Mar. 2009.
[4.9] J. Z. Li, J. Bai, J. –S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett., vol. 91, no. 2, pp. 021114–1–3, Jul. 2007.
[4.10] K. Ishida, M. Akiyama, and S. Nishi, “Misfit and treading dislocations in GaAs layers grown on Si substrates by MOCVD,” Jpn. J. Appl. Phys., vol. 26, no. 3, pp. L163–L165, Feb. 1987.
[4.11] S. C. Lee, B. Pattada, S. D. Hersee, Y. B. Jiang, and S. R. J. Brueck, “Nanoscale spatial phase modulation of GaN on a V-grooved Si substrate—cubic phase GaN on Si(001) for monolithic integration,” IEEE J. Quantum Electron., vol. 41, no. 4, pp. 596–605, Apr. 2005.
[4.12] M. Möller, M. M. de Lima, A. Cantarero, T. Chiaramonte, M. A. Cotta, and F. Iikawa, “Optical emission of InAs nanowires,” Nanotechnol., vol. 23, no.37, pp. 375794–1-6, Aug. 2012.
[4.13] S. G. Ihn, J. I. Song, Y. H. Kim, J. Y. Lee, I. H. Ahn, “Growth of GaAs nanowires on Si substrates using a molecular beam epitaxy,” IEEE Trans. Nanotechnol., vol. 6, no. 3,pp. 384–389, May 2007.
[4.14] N.–H. Cho, B. C. De Cooman, C. B. Carter, R. Fletcher, D. K. Wanger, “Antiphase boundaries in GaAs,” Appl. Phys. Lett., vol. 47, pp. 879–881, 1985.
[4.15] G. Wang, M. R. Leys, R. Loo, O. Richard, H. Bender, N. Waldron, G. Brammertz, J. Dekoster, W. Wang, M. Seefeldt, M. Caymax, M. M. Heyns, “Selective area growth of high quality InP on Si (001) substrates,” Appl. Phys. Lett., vol. 97, no. 12, pp.121913–1–3, Sep. 2010.
[4.16] H. L. Tsai and Y. C. Kao, “Generation and propagation of threading dislocations in GaAs grown on Si,” J. Appl. Phys., vol. 67, no. 6, pp. 2862–2865, Mar. 1990.
[4.17] K. Adomi, S. Strite, H. Morkoç, Y. Nakamura, and N. Otsuka, “Characterization of GaAs grown on Si epitaxial layers on GaAs substrates,” J. Appl. Phys., vol. 69, no. 1, pp. 220–225, Jan. 1991.
[4.18] R. M. Sieg, S. A. Ringel, S. M. Ting, E. A. Fitzgerald, R. N. Sacks, “Anti–phase domain–free growth of GaAs on offcut (001) Ge wafer by molecular beam epitaxy with suppressed Ge out diffution,” J. Electon. Mater., vol. 27, no. 7, pp. 900–907, Mar. 1998.
[4.19] G. Wang, R. Loo, E. Simoen, L. Souriau, M. Caymax, M. M. Heyns, B. Blanpain, “A model of threading dislocation density in strain–relaxed Ge and GaAs epitaxial films on Si (100),” Appl. Phys. Lett., vol. 94, no. 10, pp.102115–1–3, Mar. 2009.
[4.20] M. Yamaguchi, “Dislocation density reduction in heteroepitaxial III–V compound films on Si substrates for optical devices,” J. Mater. Res., vol. 6, no. 2, pp. 376–384, Feb. 1991.
[4.21] S. Luryi, E. Suhir, “New approach to the high quality epitaxial growth of lattice–mismatched materials,” Appl. Phys. Lett., vol. 49, no. 3, pp. 140–142, May. 1986.
[4.22] F. Y. Huang, “Theory of strain relaxation for epitaxial layers grown on substrate of finite dimension,” Phys. Rev. Lett., vol. 85, no. 4, pp. 784–787, Jul. 2000.
[4.23] A. Fischer, H. Richter H, “Elastic misfit stress relaxation in heteroepitaxial SiGe/Ge mesa structures,” Appl. Phys. Lett., vol. 61, no. 22,pp. 2656–2658, Sep. 1992.
[4.24] D. Zubia, S. D. Hersee, “Nanoheteroepitaxy: the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys., vol. 85, no. 9, pp. 6492–6496, Jan. 1999.
[4.25] S.–J. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld A, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett., vol. 90, no. 5, pp. 052113–1–3, Feb. 2007.
[4.26] M. Shimizu, M. Enatsu, M. Furukawa, T. Mizuki, T. Sakurai, “Dislocation–density studies in MOCVD GaAs on Si substrates,” J. Crystl. Growth, vol. 93, no. 1, pp. 475–480, May 1988.
[4.27] P. J. Wellmann, S. A. Sakwe, F. Oehlshläger, V. Hoffmann, U. Zeimer, A. Knauer, “Determination of dislocation density in MOVPE grown GaN layers using KOH defect etching,” J. Crystl. Growth, vol. 310, no. 1, pp. 955–958, Nov. 2008.
[4.28] L. Gao, R. L. Woo, B. Liang, M. Pozuelo, S. Prikhodko, M. Jackson, N. Goel , M. K. Hudait, D. L. Huffaker, M. S. Goorsky, S. Kodambaka, R. F. Hicks, “Self–catalyzed epitaxial growth of vertical Indium Phosphide nanowires on Silicon,” Nano lett., vol. 9, no. 6, pp.2223–2228, Apr. 2009.
[4.29] G. Miao, D. Zhang, “Stages in the catalyst–free InP nanowire growth on silicon (100) by metal organic chemical vapor deposition,” Nano. Res. Lett., vol. 7, no.1, pp. 321–1–6, Jun. 2012.
Chapter 5
[5.1] O. Ambacher, “Growth and applications of group III–nitrides,” J. Phys. D: Appl. Phys., vol. 31, no. 20, pp. 2653–2710, Jun. 1998.
[5.2] J. Komiyama, Y. Abe, S. Suzuki, and H. Nakanishi, “Stress reduction in epitaxial GaN films on Si using cubic SiC as intermediate layers,” J. Appl. Phys., vol. 100, no.3, pp. 033519–1–5, Aug. 2006.
[5.3] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN metal–semiconductor–metal photodetectors with low–temperature–GaN cap layers and ITO metal contacts,” IEEE Electron Device Lett., vol. 24, no. 4, pp. 212–214, Apr. 2003.
[5.4] S. J. Chang, S. M. Wang, P. C. Chang, C. H. Kuo, S. J. Young, and T. P. Chen, “GaN metal–semiconductor–metal photodetectors prepared on nanorod template,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 625–627, May 2010.
[5.5] J. K. Sheu, M. L. Lee, and W. C. Lai, “Effect of low–temperature–grown GaN cap layer on reduced leakage current of GsN Schottky diodes,” Appl. Phys. Lett., vol. 86, no.5, pp. 052103–1–3, Jan. 2005.
[5.6] Y. D. Jhou, S. J. Chang, Y. K. Su, Y. Y. Lee, C. H. Liu, and H. C. Lee, “GaN schottky barrier photodetectors with SiN/GaN nucleation layer,” Appl. Phys. Lett., vol. 91, no. 10, 103506–1–3, Sep. 2007.
[5.7] Y. T. Chiang, Y. K. Fang, T. H. Chou, F. R. Juang, K. C. Hsu, T. C. Wei, C. I. Lin, C. W. Chen, and C. Y. Liang, “GaN on silicon substrate with various SiC buffer layer for UV detecting applications,” IEEE Sens. J., vol. 10, no. 8, pp. 1291–1296, Aug. 2010.
[5.8] H. Yonezu, “Control of structural defects in group III–V–N alloys grown on Si,” Semicond. Sci. Technol., vol. 17, no. 8, pp. 762–768, Jul. 2002.
[5.9] C. C. Huang, S. J. Chang, R. W. Chuang, J. C. Lin, Y. C. Cheng, and W. J. Lin, “GaN grown on Si(111) with step–graded AlGaN intermediate layers,” Appl. Surf. Sci., vol. 256, no. 21, pp. 6367–6370, Apr. 2010.
[5.10] S. Tripathy, S. J. Chua, P. Chen, and Z. L. Miao, “Micro–Raman investigation of strain in GaN and AlxGa1-xN/GaN heterostructures grown on Si(111),” J. Appl. Phys., vol. 92, no. 7, pp. 3503–3510, Jun. 2002.
[5.11] D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong, and H. Yang, “Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H–SiC, and c–plane sapphire,” Appl. Phys. Lett., vol. 83, no. 4, pp. 677–679, Jul. 2003.
[5.12] V. S. Harutyunyan, A. P. Aivazyan, E. R. Weber, Y. Kim, Y. Park, and S. G. Subramanya, “High–resolution x–ray diffraction strain–stress analysis of GaN/sapphire heteropstrucures,” J. Phys. D: Appl. Phys., vol. 34, no. 10A, pp. A35–A39, May 2001.
[5.13] M. K. Öztürk, H. Altuntaş, S. Çörekçi, Y. Hongbo, S. Özçelik, and E. Özbay, “Strain–Stress Analysis of AlGaN/GaN Heterostructures With and Without an AlN Buffer and Interlayer,” Strain, vol. 47, no. (suppl. 2), pp. 19–27, Jun. 2010.
[5.14] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett., vol. 79, no. 10, pp. 1417–1419, Sep. 2001.
[5.15] W. Grieshaber, E. F. Schubert, I. D. Goepfert, R. F. Karlicek, M. J. Schurman, and C. Tran, “Competition between band gap and yellow luminescence in GaN and its relevance for optoelectronic devices,” J. Appl. Phys., vol. 80, no. 8, pp. 4615–4620, Oct. 1996.
[5.16] S. J. Chung, O. H. Cha, C. H. Hong, E. K. Suh, H. J. Lee, Y. S. Kim, B. H. Kim, “Emission mechanism of the yellow luminescence in undoped GaN,” J. Korean Phys. Soc., vol. 37, no. 6, pp. 1003–1006, Dec. 2000.
[5.17] E. G. Brazel, M. A. Chin, and V. Narayanamurti, “Direct observation of localized high current densities in GaN films,” Appl. Phys. Lett., vol. 74, no. 16, pp. 2367–2369, Apr. 1999.
[5.18] C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, S. C. Chen, C. S. Chang, T. K. Lin, H. L. Liu, and J. J. Tang, “GaN MSM UV photodetectors with Titanium tungsten transparent electrodes,” IEEE Trans. Electron Devices, vol. 53, no. 1, pp. 38–42, Jan 2006.
[5.19] S. J. Chang, C. L. Yu, R. W. Chung, P. C. Chang, Y. C. Lin, Y. W. Jhan, and C. H. Chen, “Nitride–based MIS–like photodiodes with semi insulating Mg–doped GaN cap layers”, IEEE Sens. J., vol. 6, no. 5, pp. 1043–1044, Oct. 2006.
Chapter 6
[6.1] B. A. Haskell, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Progress in the growth of nonpolar gallium nitride,” Phys. Stat. Sol. B, vol. 244, no. 8, pp. 2847–2858, Jun. 2007.
[6.2] C. H. Chiu, D. W. Lin, C. C. Lin, Z. Y. Li, W. T. Chang, H. W. Hsu, H. C. Kuo, T. C. Lu, S. C. Wang, W. T. Liao, T. Tanikawa, Y. Honda, M. Yamaguchi, and N. Sawaki, “Reduction of efficiency droop in semi polar (1101) InGaN/GaN light emitting diodes grown on patterned silicon substrates,” Appl. Phys. Express, vol. 4, 012105–1–3, Dec. 2011.
[6.3] I. Lo, C. H. Hsieh, Y. L. Chen, W. Y. Pang, Y. C. Hsu, J. C. Chiang, M. C. Chou, J. K. Tsai, and D. M. Schaadt, “Line defects of M–plane GaN grown on γ–LiAlO2 by plasma–assisted molecular beam epitaxy,” Appl. Phys. Lett., vol. 92, no.20, 202106–1–3, May 2008.
[6.4] B. Bastek, F. Bertram, J. Christen, T. Wernicke, M. Weyers, and M. Kneissl, “A–plane GaN epitaxial lateral overgrowth structures: growth domains, morphological defects, and impurity incorporation directly imaged by cathodoluminescence microscopy,” Appl. Phys. Lett., vol. 92, no.21, pp. 212111–1–3, May 2008.
[6.5] Z. H. Wu, A. M. Fischer, F. A. Ponce, T. Yokogawa, S. Yoshida, and R. Kato, “Role of the buffer layer thickness on the formation of basal plane stacking faults in a–plane GaN epitaxy on r–sapphire,” Appl. Phys. Lett., vol. 93, no. 1, pp. 011901–1–3, Jul. 2008.
[6.6] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Effect of dislocation density on efficiency droop in GaInN/GaN light–emitting diodes,” Appl. Phys. Lett., vol. 91, no. 23, pp. 231114–1–3, Dec. 2007.
[6.7] S. Tanaka, Y. Honda, N. Kameshiro, R. Iwasaki, N. Sawaki, and T. Tanji, “Transmission electron microscopy study of the microstructure in selective–area–grown GaN and an AlGaN/GaN heterostructure on a 7–degree off–oriented (001) Si substrate,” Jpn. J. Appl. Phys., vol. 41, pp. L846–L848, Jun. 2002.
[6.8] G. T. Chen, S. P. Chang, J. I. Chyi, and M. N. Chang, “Growth and characterization of crack–free semipolar {1–101} InGaN/GaN multiple–quantum well on V–grooved (001) Si substrates,” Appl. Phys. Lett., vol. 92, no. 24, pp. 241904–1–3, Jun. 2008.
[6.9] G. D. Chen, M. Smith, J. Y. Lin, H. X. Jiang, S. H. Wei, M. A. Khan, and C. J. Sun, “Fundamental optical transitions in GaN,” Appl. Phys. Lett., vol. 68, no. 20, pp. 2784–2787, Mar. 1996.
[6.10] R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Khan, “Luminescence from stacking faults in gallium nitride,” Appl. Phys. Lett., vol. 86, no. 2, pp. 021908–1–3, Jan. 2005.
[6.11] T. Hikosaka, T. Narita, Y. Honda, M. Yamaguchi, and N. Sawaki, “Optical and electrical properties of (1–101) GaN grown on a 7° off–axis (001)Si substrate,” Appl. Phys. Lett., vol. 84, no. 23, pp. 4717–4719, May 2004.
[6.12] A. Sakai, H. Sunakawa, and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density,” Appl. Phys. Lett., vol. 71, no. 16, pp. 2259–2261, Aug. 1997.
[6.13] S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Tech. B, vol. 16, no.4, pp. 2204–2214, Jul. 1998.
[6.14] E. Kuokstis, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN–based epilayers and multiple quantum wells,” Appl. Phys, Lett., vol. 80, no. 6, pp. 977–979, Nov. 2002.
[6.15] Y. Hondam Y. Kawaguchi, Y. Ohtake, S. Tanaka, M. Yamaguchi, and N. Sawaki, “Optical and electrical properties of (1–101) GaN grown on a 7° off–axis (001) Si substrate,” Appl. Phys. Lett, vol. 84, no. 23, pp. 4714–4716, May 2004.
[6.16] R. Chau, B. Doyle, J. Kavaileros, D. Barlage, A. Murthy, M. Doczy, R. Arghavani, and S. Datta, “Advanced depleted–substrate transistors: single–gate, double–gate, and tri–gate,” International conference on solid–state devices and materials (SSDM), Nagoya, Japan, 2002, pp. 68–69.
[6.17] D. K. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H. G. P. Wang, “Device scaling limits of Si MOSFETs and their application dependencies,” in Proc. of the IEEE, vol. 89, no. 3. pp. 259–288, Mar. 2001.
[6.18] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High–κ/metal–gate stack and its MOSFET characteristics,” IEEE Electron Device Lett., vol. 25, no. 6, pp. 408–410, Jan. 2004.