| 研究生: |
王英名 Wang, Ying-ming |
|---|---|
| 論文名稱: |
運用高濃度電漿反應性離子蝕刻製作矽基微結構模具並進行高分子微熱成型加工之研究 Investigation of Micro-Thermoforming Process Using Silicon Mold Fabricated by Deep Reactive Ion Etching |
| 指導教授: |
莊怡哲
Juang, Yi-je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 矽基加工技術 、針草現象 、微熱成型加工 、高濃度電漿反應性離子蝕刻 |
| 外文關鍵詞: | Micro-Thermoforming, Black silicon method, Aspect ratio dependent etching rate, Silicon-based micro-machining, Inductive coupled plasma, Reactive ion etching |
| 相關次數: | 點閱:65 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以矽晶圓做為基材製作矽基微結構模具,並將模具搭配高分子加工中廣為運用的微熱成型法,來製作高分子薄膜微結構,以用於微流體晶片系統。在加工模具製作方面,運用矽基加工技術 ( silicon-based micro-machining ) 中的誘導感應偶合電漿離子蝕刻 ( inductive coupled plasma-reactive ion etching,ICP-RIE ),製作不同深寬比的矽基微結構模具。本研究成功蝕刻出25種垂直且深寬比介於1.66 ~ 24.60的矽基微結構模具。同時,在深矽蝕刻製程中,當線寬大於50μm時,所出現的針草現象 ( black silicon method,BSM ),本研究亦提出消除針草的操作條件。
此外,為配合自製之微熱成型設備,本研究也製作線寬分別約為130與40μm的貫穿矽基微結構模具,並搭配厚度為40、70μm的polymethyl methacrylate ( PMMA ) 高分子薄膜進行微熱成型實驗,探討加工模具線寬、加工變數 ( 操作溫度、施加壓力、加壓時間 ) 對薄膜微結構成型的影響。利用微熱成型加工可製得深寬比介於0.44 ~ 2.53的高分子薄膜微結構。
In this study, we investigated the micro-thermoforming process for fabrication of polymeric thin film microstructures using silicon molds. The silicon molds with high aspect ratio microstructures (HARMs) were fabricated via inductive coupled plasma-reactive ion etching (ICP-RIE) process. The polymeric thin films with two different thicknesses were used and various processing conditions such as film temperature, applied pressure and thermoforming time were discussed. The result showed that the silicon molds with and without the through holes were constructed and the aspect ratio of the microstructures ranges from 1.7 to 24.6. For the molds without through holes, black silicon was formed at the bottom of the microstructures when the line width is larger than 50μm, which can be effectively removed by O2 plasma treatment. As to the thermoforming process, higher applied pressure, higher film temperature and longer thermoforming time will facilitate fabrication of polymeric thin film with microstructures; however, due to the limitation of the equipment/device, higher applied pressure, higher film temperature and longer thermoforming time may cause film broken at the locations where the film being clamped and pre-stretched during thermoforming process. Utilizing the thermoforming process, we were able to obtain the polymeric thin film with microstructures having aspect ratio ranging from 0.44 to 2.53. The mathematical equation describing the relationship between the depth and the film thickness of the thermoformed film for conventional thermoforming process was modified and a reasonably well agreement between calculation and experimental results was obtained.
1. Whitesides, G.M., "The origins and the future of microfluidics", Nature, 442, 368-73, (2006).
2. Bashir, R., "BioMEMS: state-of-the-art in detection, opportunities and prospects", Advanced Drug Delivery Reviews, 56, 1565-1586, (2004).
3. Lee, L.J., "BioMEMs and Micro-/Nano-Processing of Polymers- An Overview", Annals of Biomedical Engineering, 34, 25-46, (2003).
4. Manz, A., Graber, N., and Widmer, H.M., "Miniaturized total chemical analysis systems: a novel concept for chemical sensing", Sensors and Actuators B, 1, 244-248, (1990).
5. Sanders, G.H.W. and Manz, A., "Chip-based microsystems for genomic and proteomic analysis", Trends in Analytical Chemistry, 19, 364-378, (2000).
6. DeWitt, S.H., "Micro reactors for chemical synthesis", Current Opinion in Chemical Biology, 3, 350-356, (1999).
7. Effenhauser, C.S., Bruin, G.J., and Paulus, A., "Integrated chip-based capillary electrophoresis", Electrophoresis, 18, 2203-2213, (1997).
8. Kopp, M.U., Mello, A.J., and Manz, A., "Chemical amplification: continuous-flow PCR on a chip", Science, 280, 1046-1048, (1998).
9. Lin, Y.C., Ho, H.C., Tseng, C.K., and Hou, S.Q., "A poly-methylmethacrylate electrophoresis microchip with sample preconcentrator", Journal of Micromechanics and Microengineering, 11, 189-194, (2001).
10. Fodor, S., "DNA sequencing massively parallel genomics", Science, 277, 393-395, (1997).
11. Becker, H. and Locascio, L.E., "Polymer microfluidic devices", Talanta, 56, 267-287, (2002).
12. Lee, L.J., "Polymer nanoengineering for biomedical applications", Annals of Biomedical Engineering, 34, 75-88, (2006).
13. Heckele, M. and Schomburg, W.K., "Review on micro molding of thermoplastic polymers", Journal of Micromechanics and Microengineering, 14, 1-14, (2004).
14. 施佑澤, "探討以微熱成型法製作高深寬比之高分子微結構", 國立成功大學碩士論文, (2007).
15. Jansen, H., Deboer, M., Legtenberg, R., and Elwenspoek, M., "The black silicon method - a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control", Journal of Micromechanics and Microengineering, 5, 115-120, (1995).
16. Choudhury, P.R., "Handbook of microlithography, micromaching & microfabrication / High aspect ratio processing", The institution of electrical engineers, (1997).
17. Feiertag, G., Ehrfeld, W., Lehr, H., and Schmidt, M., "Sloped irradiation techniques in deep x-ray lithography for 3D shaping of microstructures", Proceedings of SPIE, 3048, 136-145, (1997).
18. Malek, C.K. and Saile, V., "Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and-systems: a review", Microelectronics Journal, 35, 131-143, (2004).
19. Malek, C.G.K., "Fabrication of high-aspect-ratio precision MEMS with LIGA using synchrotron radiation", Proceedings of SPIE, 4592, 119-130, (2001).
20. Kupka, R.K., Bouamrane, F., Cremers, C., and Megtert, S., "Microfabrication: LIGA-X and applications", Applied Surface Science, 164, 97-110, (2000).
21. Chung, S.J., Hein, H., Mohr, J., Pantenburg, F.J., Schulz, J., and Wallrabe, U., "LIGA technology today and its industrial applications", Proceedings of SPIE, 4194, 44-55, (2000).
22. M.S. Despa, K.W.K., J.R. Collier, "Injection molding of polymeric LIGA HARMs", Microsystem Technologies 6, 60-66, (1999).
23. Cheng, Y., Shew, B.Y., Lin, C.Y., Wei, D.H., and Chyu, M.K., "Ultra-deep LIGA process", Journal of Micromechanics and Microengineering, 9, 58-63, (1999).
24. Menz, W., "LIGA and related technologies for industrial application", Sensors & Actuators: A. Physical, 54, 785-789, (1996).
25. Rognert, A., Eichert, J., Miinchmeyert, D., Peterst, R.-P., and Mohr, J., "The LIGA technique-what are the new opportunities", Journal of Micromechanics and Microengineering, 2, 133-140, (1992).
26. Liu, G., Tian, Y., and Kan, Y., "Fabrication of high-aspect-ratio microstructures using SU8 photoresist", Microsystem Technologies, 11, 343-346, (2005).
27. Zhang, J., Chan-Park, M.B., and Conner, S.R., "Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8", Lab on a Chip, 4, 646-653, (2004).
28. Yang, C.R., Hsieh, G.W., Hsieh, Y.S., and Lee, Y.D., "Microstructuring characteristics of a chemically amplified photoresist synthesized for ultra-thick UV-LIGA applications", Journal of Micromechanics and Microengineering, 14, 1126-1134, (2004).
29. Tseng, F.G. and Yu, C.S., "High aspect ratio ultrathick micro-stencil by JSR THB-430N negative UV photoresist", Sensors & Actuators: A. Physical, 97, 764-770, (2002).
30. Ling, Z.G., Lian, K., and Jian, L., "Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters", Proceedings of SPIE, 3999, 1019-1027, (2000).
31. Dumbravescu, N., "Experiments for 3-D structuring of thick resists by gray tone lithography", Materials Science in Semiconductor Processing, 3, 569-573, (2000).
32. Conedera, V., Le Goff, B., and Fabre, N., "Potentialities of a new positive photoresist for the realization of thick moulds", Journal of Micromechanics and Microengineering, 9, 173-175, (1999).
33. Lorenz, H., Despont, M., Fahrni, N., Brugger, J., Vettiger, P., and Renaud, P., "High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS", Sensors & Actuators: A. Physical, 64, 33-39, (1998).
34. Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., and Vettiger, P., "SU-8: a low-cost negative resist for MEMS", Journal of Micromechanics and Microengineering, 7, 121-124, (1997).
35. Lee, K.Y., LaBianca, N., Rishton, S.A., Zolgharnain, S., Gelorme, J.D., Shaw, J., and Chang, T.H.P., "Micromachining applications of a high resolution ultrathick photoresist", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 13, 3012-3016, (1995).
36. Hollis, A., Rastegar, S., Descloux, L., Delacretaz, G., and Rink, K., "Zona pellucida microdrilling with a 1.48 um diode laser", IEEE Engineering in Medicine and Biology Magazine, 16, 43-47, (1997).
37. Filiz, S., Xie, L., Weiss, L.E., and Ozdoganlar, O.B., "Micromilling of microbarbs for medical implants", International Journal of Machine Tools & Manufacture, 48, 459-472, (2008).
38. Braun, A., Zimmer, K., and Bigl, F., "Combination of contour and half-tone masks used in laser ablation", Applied Surface Science, 168, 178-181, (2000).
39. Cao, D.M., Jiang, J., Yang, R., and Meng, W.J., "Fabrication of high-aspect-ratio microscale mold inserts by parallel μEDM", Microsystem Technologies, 12, 839-845, (2006).
40. Liao, Y.S., Chen, S.T., Lin, C.S., and Chuang, T.J., "Fabrication of high aspect ratio microstructure arrays by micro reverse wire-EDM", Journal of Micromechanics and Microengineering, 15, 1547-1555, (2005).
41. Lim, H.S., Wong, Y.S., Rahman, M., and Edwin Lee, M.K., "A study on the machining of high-aspect ratio micro-structures using micro-EDM", Journal of Materials Processing Tech., 140, 318-325, (2003).
42. Schoth, A., Forster, R., and Menz, W., "Micro wire EDM for high aspect ratio 3D microstructuring of ceramics and metals", Microsystem Technologies, 11, 250-253, (2005).
43. Williams, K.R., Gupta, K., and Wasilik, M., "Etch rates for micromachining processing - Part II", Journal of Microelectromechanical Systems, 12, 761-778, (2003).
44. Williams, K.R. and Muller, R.S., "Etch rates for micromachining processing", Journal of Microelectromechanical Systems, 5, 256-269, (1996).
45. Yih, P.H., Saxena, V., and Steckl, A.J., "A review of SiC reactive ion etching in fluorinated plasmas", Physica Status Solidi B-Basic Research, 202, 605-642, (1997).
46. Laermer, F. and Schilp, D., "Method of anisotropically etching silicon", United States, (1994).
47. Tachi, S., Tsujimoto, K., and Okudaira, S., "Low-temperature reactive ion etching and microwave plasma etching of silicon", Applied Physics Letters, 52, 616-618, (1988).
48. Kawata, H., Yasuda, M., and Hirai, Y., "Fabrication of Si mold with smooth side wall by new plasma etching process", Microelectronic Engineering, 84, 1140-1143, (2007).
49. Yang, Y.J., Kuo, W.C., and Fan, K.C., "Single-run single-mask inductively-coupled-plasma reactive-ion-etching process for fabricating suspended high-aspect-ratio microstructures", Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 45, 305-310, (2006).
50. Tillocher, T., Dussart, R., Mellhaoui, X., Lefaucheux, P., Maaza, N.M., Ranson, P., Boufnichel, M., and Overzet, L.J., "Oxidation threshold in silicon etching at cryogenic temperatures", Journal of Vacuum Science & Technology A, 24, 1073-1082, (2006).
51. Mita, Y., Kubota, M., Harada, T., Marty, F., Saadany, B., Bourouina, T., and Shibata, T., "Contour lithography methods for DRIE fabrication of nanometre-millimetre-scale coexisting microsystems", Journal of Micromechanics and Microengineering, 16, S135-S141, (2006).
52. Li, X., Cao, X., Zhou, H., Wilkinson, C.D.W., Thoms, S., Macintyre, D., Holland, M., and Thayne, I.G., "30 nm Tungsten gates etched by a low damage ICP etching for the fabrication of compound semiconductor transistors", Microelectronic Engineering, 83, 1152-1154, (2006).
53. Kawata, H., Yasuda, M., and Hirai, Y., "Si etching with high aspect ratio and smooth side profile for mold fabrication", Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 45, 5597-5601, (2006).
54. Ji, J., Tay, F.E.H., and Miao, J., "Microfabricated hollow microneedle array using ICP etcher", Journal of Physics: Conference Series, 34, 1132-1136, (2006).
55. Hosomi, K., Kikawa, T., Goto, S., Yamada, H., Katsuyama, T., and Arakawa, Y., "Ultra high-aspect-ratio, SiO2 deeply etched periodic structures with smooth surfaces for photonics applications", Journal of Vacuum Science & Technology B, 24, 1226-1229, (2006).
56. Gao, J.X., Yeo, L.P., Chan-Park, M.B., Miao, J.M., Yan, Y.H., Sun, J.B., Lam, Y.C., and Yue, C.Y., "Antistick postpassivation of high-aspect ratio silicon molds fabricated by deep-reactive ion etching", Journal of Microelectromechanical Systems, 15, 84-93, (2006).
57. Dixit, P. and Miao, J.M., "Effect of clamping ring materials and chuck temperature on the formation of silicon nanograss in deep RIE", Journal of the Electrochemical Society, 153, G771-G777, (2006).
58. Yeom, J., Wu, Y., Selby, J.C., and Shannon, M.A., "Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect", Journal of Vacuum Science & Technology B, 23, 2319-2329, (2005).
59. Mellhaoui, X., Dussart, R., Tillocher, T., Lefaucheux, P., Ranson, P., Boufnichel, M., and Overzet, L.J., "SiOxFy passivation layer in silicon cryoetching", Journal of Applied Physics, 98, 10490101-10490110, (2005).
60. Marty, F., Rousseau, L., Saadany, B., Mercier, B., Francais, O., Mita, Y., and Bourouina, T., "Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures", Microelectronics Journal, 36, 673-677, (2005).
61. Dussart, R., Mellhaoui, X., Tillocher, T., Lefaucheux, P., Volatier, M., Socquet-Clerc, C., Brault, P., and Ranson, P., "Silicon columnar microstructures induced by an SF6/O2 plasma", Journal of Physics D-Applied Physics, 38, 3395-3402, (2005).
62. Chang, C.L., Wang, Y.F., Kanamori, Y., Shih, J.J., Kawai, Y., Lee, C.K., Wu, K.C., and Esashi, M., "Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures", Journal of Micromechanics and Microengineering, 15, 580-585, (2005).
63. Boufnichel, M., Lefaucheux, P., Aachboun, S., Dussart, R., and Ranson, P., "Origin, control and elimination of undercut in silicon deep plasma etching in the cryogenic process", Microelectronic Engineering, 77, 327-336, (2005).
64. Sarajlic, E., de Boer, M.J., Jansen, H.V., Arnal, N., Puech, M., Krijnen, G., and Elwenspoek, M., "Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers", Journal of Micromechanics and Microengineering, 14, S70-S75, (2004).
65. Pike, W.T., Karl, W.J., Kumar, S., Vijendran, S., and Semple, T., "Analysis of sidewall quality in through-wafer deep reactive-ion etching", Microelectronic Engineering, 73-74, 340-345, (2004).
66. Lee, C.H., Chang, T.W., Lee, K.L., Lin, J.Y., and Wang, J., "Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching", Applied Physics a-Materials Science & Processing, 79, 2027-2031, (2004).
67. Richter, K., Fischer, D., Schmidt, D., and Bartha, J.W., "Complex micro-patterning in silicon with varied tilt angles realized by advanced plasma etching", Surface & Coatings Technology, 174, 845-848, (2003).
68. Rangelow, I.W., "Critical tasks in high aspect ratio silicon dry etching for microelectromechanical systems", Journal of Vacuum Science & Technology A, 21, 1550-1562, (2003).
69. Park, W.J., Kim, J.H., Cho, S.M., Yoon, S.G., Suh, S.J., and Yoon, D.H., "High aspect ratio via etching conditions for deep trench of silicon", Surface & Coatings Technology, 171, 290-295, (2003).
70. Xie, H., Erdmann, L., Zhu, X., Gabriel, K.J., and Fedder, G.K., "Post-CMOS processing for high-aspect-ratio integrated silicon microstructures", Journal of Microelectromechanical Systems, 11, 93-101, (2002).
71. de Boer, M.J., Gardeniers, J.G.E., Jansen, H.V., Smulders, E., Gilde, M.J., Roelofs, G., Sasserath, J.N., and Elwenspoek, M., "Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures", Journal of Microelectromechanical Systems, 11, 385-401, (2002).
72. Ayon, A.A., Bayt, R.L., and Breuer, K.S., "Deep reactive ion etching: a promising technology for micro- and nanosatellites", Smart Materials & Structures, 10, 1135-1144, (2001).
73. Volland, B., Hudek, F.S., Heerlein, H., and Rangelow, I.W., "Dry etching with gas chopping without rippled sidewalls", Journal of Vacuum Science & Technology B, 17, 2768-2771, (1999).
74. Richter, K., Orfert, M., Howitz, S., and Thierbach, S., "Deep plasma silicon etch for microfluidic applications", Surface & Coatings Technology, 119, 461-467, (1999).
75. K. Richter a, M. Orfert a, S. Howitz b, S. Thierbach a, "Deep plasma silicon etch for microfluidic applications", Surface and Coatings Technology 116-119, 461-467, (1999).
76. Aachboun, S. and Ranson, P., "Deep anisotropic etching of silicon", Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 17, 2270-2273, (1999).
77. Weigold, J.W., Juan, W.H., and Pang, S.W., "Dry etching of deep Si trenches for released resonators in a Cl2 plasma", Journal of the Electrochemical Society, 145, 1767-1771, (1998).
78. Kassing, R. and Rangelow, I.W., "Etching processes for high aspect ratio micro systems technology (HARMST)", Microsystem Technologies, 3, 20-27, (1996).
79. Jansen, H., Deboer, M., Burger, J., Legtenberg, R., and Elwenspoek, M., "The black silicon method II : the effect of mask material and loading on the reactive ion etching of deep silicon trenches", Microelectronic Engineering, 27, 475-480, (1995).
80. Giboz, J., Copponnex, T., and Mele, P., "Microinjection molding of thermoplastic polymers: a review", Journal of Micromechanics and Microengineering, 17, R96-R109, (2007).
81. Xu, G., Yu, L., Lee, L.J., and Koelling, K.W., "Experimental and numerical studies of injection molding with microfeatures", Polymer Engineering & Science, 45, 866-875, (2005).
82. Yu, L., Koh, C.G., Lee, L.J., Koelling, K.W., and Madou, M.J., "Experimental investigation and numerical simulation of injection molding with micro-features", Polymer Engineering and Science, 42, 871-888, (2002).
83. Chen, R.H. and Lan, C.L., "Fabrication of high-aspect-ratio ceramic microstructures by injection molding with the altered lost mold technique", Journal of Microelectromechanical Systems, 10, 62-68, (2001).
84. Despa, M.S., Kelly, K.W., and Collier, J.R., "Injection molding of polymeric LIGA HARMs", Microsystem Technologies, 6, 60-66, (1999).
85. Zhao, Y. and Cui, T., "Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique", Journal of Micromechanics and Microengineering, 13, 430-435, (2003).
86. Qi, S., Liu, X., Ford, S., Barrows, J., Thomas, G., Kelly, K., McCandless, A., Lian, K., Goettert, J., and Soper, S.A., "Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection", Lab on a Chip, 2, 88-95, (2002).
87. Juang, Y.J., Lee, L.J., and Koelling, K.W., "Hot embossing in microfabrication. Part I: Experimental", Polymer Engineering & Science, 42, 539-550, (2002).
88. Becker, H. and Heim, U., "Hot embossing as a method for the fabrication of polymer high aspect ratio structures", Sensors & Actuators: A. Physical, 83, 130-135, (2000).
89. Jaszewski, R.W., Schift, H., Schnyder, B., Schneuwly, A., and Groning, P., "The deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing", Applied Surface Science, 143, 301-308, (1999).
90. Gottschalch, F., Hoffmann, T., Sotomayor Torres, C.M., Schulz, H., and Scheer, H.C., "Polymer issues in nanoimprinting technique", Solid State Electronics, 43, 1079-1083, (1999).
91. Heckele, M., Bacher, W., and Muller, K.D., "Hot embossing-The molding technique for plastic microstructures", Microsystem Technologies, 4, 122-124, (1998).
92. Hirai, Y., Fujiwara, M., Okuno, T., Tanaka, Y., Endo, M., Irie, S., Nakagawa, K., and Sasago, M., "Study of the resist deformation in nanoimprint lithography", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 19, 2811-2815, (2001).
93. Martynova, L., Locascio, L.E., Gaitan, M., Kramer, G.W., Christensen, R.G., and MacCrehan, W.A., "Fabrication of plastic microfluid channels by imprinting methods", Analysis Chemistry, 144, 4783-4789, (1997).
94. Yeo, L.P., Yan, Y.H., Lam, Y.C., and Chan-Park, M.B., "Design of experiment for optimization of plasma-polymerized octafluorocyclobutane coating on very high aspect ratio silicon molds", Langmuir, 22, 10196-10203, (2006).
95. Zhou, W.X. and Chan-Park, M.B., "Large area UV casting using diverse polyacrylates of microchannels separated by high aspect ratio microwalls", Lab on a Chip, 5, 512-518, (2005).
96. Yan, Y.H., Chan-Park, M.B., and Yue, C.Y., "CF4 plasma treatment of poly (dimethylsiloxane): Effect of fillers and its application to high-aspect-ratio UV embossing", Langmuir, 21, 8905-8912, (2005).
97. Schmitz, G.J., Brucker, C., and Jacobs, P., "Manufacture of high-aspect-ratio micro-hair sensor arrays", Journal of Micromechanics and Microengineering, 15, 1904-1910, (2005).
98. Yan, Y., Chan-Park, M.B., Gao, J., and Yue, C.Y., "Electroless nickel-plated UV-embossed microstructured surface with very high aspect ratio channels", Langmuir, 20, 1031-1035, (2004).
99. Gao, J.X., Chan-Park, M.B., Xie, D.Z., Yan, Y.H., Zhou, W.X., Ngoi, B.K.A., and Yue, C.Y., "UV embossing of sub-micrometer patterns on biocompatible polymeric films using a focused ion beam fabricated TiN mold", Chemistry of materials, 16, 956-958, (2004).
100. Chan-Park, M.B., Yan, Y., Neo, W.K., Zhou, W.X., Zhang, J., and Yue, C.Y., "Fabrication of high aspect ratio poly (ethylene glycol)-containing microstructures by UV embossing", Langmuir, 19, 4371-4380, (2003).
101. Chan-Park, M.B. and Neo, W.K., "Ultraviolet embossing for patterning high aspect ratio polymeric microstructures", Microsystem Technologies, 9, 501-506, (2003).
102. Kim, K., Park, S., Lee, J.B., Manohara, H., Desta, Y., Murphy, M., and Ahn, C.H., "Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology", Microsystem Technologies, 9, 5-10, (2002).
103. Otto, M., Bender, M., Hadam, B., Spangenberg, B., and Kurz, H., "Characterization and application of a UV-based imprint technique", Microelectronic Engineering, 57, 361-366, (2001).
104. Bender, M., Otto, M., Hadam, B., Vratzov, B., Spangenberg, B., and Kurz, H., "Fabrication of nanostructures using a UV-based imprint technique", Microelectronic Engineering, 53, 233-236, (2000).
105. Florian, J. and 陳文瑛譯, "實用熱成型原理及應用", 中國石化出版社, (1992).
106. Karamanou, M., Warby, M.K., and Whiteman, J.R., "Computational modelling of thermoforming processes in the case of finite viscoelastic materials", Computer Methods in Applied Mechanics and Engineering, 195, 5220-5238, (2006).
107. Hosseini, H., Vasilivich, B.B., and Mehrabani-Zeinabad, A., "Rheological modeling of plug-assist thermoforming", Journal of Applied Polymer Science, 101, 4148-4152, (2006).
108. Erchiqui, F., "A new thermodynamical approach for the simulation of thermoforming process using the quasi-static finite element method", Journal of Reinforced Plastics and Composites, 25, 235-261, (2006).
109. Sala, G., Di Landro, L., and Cassago, D., "A numerical and experimental approach to optimise sheet stamping technologies: polymers thermoforming", Materials and Design, 23, 21-39, (2002).
110. Marckmann, G., Verron, E., and Peseux, B., "Finite element analysis of blow molding and thermoforming using a dynamic explicit procedure", Polymer Engineering and Science, 41, 426-439, (2001).
111. Chang, J.H. and Yang, S.Y., "Gas pressurized hot embossing for transcription of micro-features", Microsystem Technologies, 10, 76-80, (2003).
112. Truckenmueller, R., Rummler, Z., and Schaller, T., "Low-cost thermoforming of micro fluidic analysis chips", Journal of Micromechanics and Microengineering, 12, 375-379, (2002).
113. Tadmor, Z. and Gogos, C.G., "Principles of Polymer Processing", John Wiley & Sons Inc, (1979).