| 研究生: |
簡茂泓 Jian, Mao-Hong |
|---|---|
| 論文名稱: |
奈米流體於複雜的微散熱器之數值模擬與最佳化 Numerical Simulation and Optimization of Nanofluids in a Complex Micro Heat Sink |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 微流道散熱器 、奈米流體 、單相模型 、兩相模型 、基因演算法 、最佳化 |
| 外文關鍵詞: | micro heat sink, nanofluids, single-phase model, two-phase model, genetic algorithm, optimization |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以單相與兩相模型探討Al2O3/water奈米流體於均勻等熱通量三維複雜的微流道散熱器強制對流之數值模擬。在流體與固體區域皆以控制體積法求解納維-斯托克斯方程式(Navier-Stokes equations)與共軛能量方程式,以QUICK法及SIMPLE法來離散動量方程式與能量方程式。本文研究參數包括雷諾數、奈米粒子體積濃度、奈米粒子粒徑以及複雜結構幾何尺寸。雷諾數、奈米粒子體積濃度、奈米粒子粒徑以及複雜結構幾何尺寸對壓降與平均紐賽數的影響也作了詳細地討論。
首先以參考文獻中水與Al2O3/water奈米流體的可用數據作驗證,其結果相當吻合。數值模擬結果顯示,平均紐賽數會隨著奈米粒子體積濃度與雷諾數的增加而提高,且兩相模型之平均紐賽數均高於單相模型,整體平均紐賽數增加約29%到39%,然而壓降最大提升率為4.68% 。此計算結果顯示奈米流體在單相模型與兩相模型中,流場與層流對流熱傳特性上有所不同,在流場表現近乎相同,而熱傳特性上卻有明顯的差異。此外,奈米體積濃度對熱傳性能有較大的影響,但奈米粒徑的影響並不明顯。
在比較單相與兩相模型的數值結果後,並提出以多重參數結合實驗設計(DOE)及反應曲面法(RSM)進行最佳化,藉由基因演算法(GA)與計算流體力學(CFD)設計三維複雜的微散熱器之對流問題。定義熱性能因子為目標函數並發展出具有三個設計參數之迴歸函數,三個設計參數即奈米粒子粒徑,奈米粒子體積濃度和複雜結構的尺寸。由數值最佳化結果顯示,相比於原始尺寸,熱性能係數η可達到約9-16%的增益。
Numerical simulations by single-phase and two-phase models of Al2O3/Water nanofluid forced convection in a complex micro heat sink with uniform heat flux are investigated. The parameters studied include the dimensions of complex structure, the particle volume fractions and the nanoparticle diameters. The different values of Reynolds numbers are considered and the thermal performance factor are compared. In the range of parameters in the study, the Nusselt number of the complex micro heat sink considered is found to be increase with the increase of the particle concentration and Reynolds number. The multi-parameter constrained optimization procedure integrating the design of experiments (DOE), response surface methodology (RSM), genetic algorithm (GA) and computational fluid dynamics (CFD) is proposed to design the geometric configuration for the complex micro heat sink. The objective function (η) defined as the thermal performance factor has developed a regression function with three design parameters, i.e. diameter of nanoparticle, nanoparticle volume concentrations and the dimensions of the complex structure. The numerical optimization indicates that the enhancement of thermal performance factor η can achieve 9%-16% in the optimization compared with the original case.
[1] Zhai, Y.L., Xia, G.D., Liu, X.F., Li, Y.F., “Heat transfer enhancement of Al2O3-H2O nanofluids flowing through a micro heat sink with complex structure,” International Communications in Heat and Mass Transfer, vol. 66, pp. 158-166, 2015.
[2] Choi, S.U.S., “Enhancing thermal conductivity of fluids with nanoparticles,” ASME FED, vol. 231/MD66, pp. 99-105, 1995.
[3] Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J., Lee, S., “Enhanced thermal conductivity through the development of nanofluids,” Materials Research Society Symposium-Proceedings, vol. 457, pp. 3-11, 1996.
[4] Lee, S., Choi, S.U.S., Li, S., Eastman, J. A, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” ASME, Journal of Heat Transfer, vol. 121, pp. 280-289, 1999.
[5] Xie, H.Q., Wang, J. C., Xi, T. G., Liu, Y., Ai, F., Wu, Q. R., “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” Journal of Applied Physics, vol. 91, pp. 4568-4572, 2002.
[6] Xuan, Y., Li, Q., “Investigation on convective heat transfer and flow features of nanofluids,” ASME, Journal of Heat Transfer, vol. 125, pp. 151–155, 2003.
[7] Wen, D., Ding, Y., “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” International Journal of Heat and Mass Transfer, vol. 47, pp. 51-81, 2004.
[8] Murshed, S.M.S., Leong, K.C., Yang, C., “Enhanced thermal conductivity of TiO2/water-based nanofluids,” International Journal of Thermal Sciences, vol. 44, pp. 367-373, 2005.
[9] Yoo, D.H., Hong, K.S., Yang, H.S., “Study of thermal conductivity of nanofluids for the application of heat transfer fluids,” Thermochemica Acta, vol. 455, pp. 66–69, 2007.
[10] Keblinski, P., Phillpot, S.R., Choi, S.U.S., Eastman, J.A., “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” International Journal of Heat and Mass Transfer, vol. 45, pp.855–863, 2002.
[11] Vajjha, R.S., Das, D.K., “Experimental determination of thermal conductivity of three nanofluids and development of new correlations,” International Journal of Heat Mass Transfer, vol. 52, pp. 4675-4682, 2009.
[12] Maxwell, J.C., Electricity and Magnetism, 1st Ed., Clarendon Press, Oxford, England, 1873.
[13] Duangthongsuk, W., Wongwises, S. “Measurement of temperature dependent thermal conductivity and viscosity of TiO2/water nanofluids,” Thermal Fluid Science, vol. 33, pp.706-714, 2009.
[14] Beck, M.P., Yuan, Y., Warrier, P., Teja, A.S., “The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures,” Journal of Nanoparticle Research, vol. 12, pp. 1469–1477, 2010.
[15] Fotukian, S.M., Esfahany, M.N. “Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube,” International Communications in Heat Mass Trans, vol. 37, pp.214‒219, 2010.
[16] Ho, C.J., Chen, W.C., “An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink,” Applied Thermal Engineering, vol.50, pp. 516‒522, 2013.
[17] Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices and Microstructures, vol. 35, pp. 543–557, 2004.
[18] Santra, A.K., Sen, S., Chakraborty, Chakraborty, N., “Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates,” International Journal of Thermal Sciences, vol. 48, pp. 391‒400, 2009.
[19] Yang, Y.T., Lai, F.H., “Numerical investigation of cooling performance with the use of Al2O3/water nanofluids in a radial flow system,” International Journal of Thermal Sciences, vol.50, pp.61‒72, 2011.
[20] Gherasim, I., Roy, G., Nguyen, C.T., Vo-Ngoc, D., “Experimental investigation of nanofluids in confined laminar radial flows,” International Journal of Thermal Sciences, vol. 48, pp. 1486–1493, 2009.
[21] Ijam, A., Saidur, R., Ganesan, P., “Cooling of minichannel heat sink using nanofluids,” International Communications in Heat and Mass Transfer, vol. 39, pp.1188‒1194, 2012.
[22] Akbari, M., Galanis, N., Behzadmehr, A., “Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer,” International Journal of Thermal Sciences, vol. 50, pp.1343‒1354, 2011.
[23] Kalteh, M., Abbassi, A., Avval, M.S., Frijns, A., Darhuber, A. “Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink,” Applied Thermal Engineering, vol. 36, pp. 260‒268, 2012.
[24] Moraveji, K.M. , Ardehali, R.M., “CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink,” International Communications in Heat and Mass Transfer, vol. 44, pp.157‒164, 2013.
[25] Brinkman, H.C., “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys, vol.20, pp.571‒581, 1952.
[26] Einstein, A., “Investigation on the theory of Brownian movement,” Dover, New York, 1956.
[27] Graham, A.L., “On the viscosity of suspensions of solid spheres,” Applied Scientific Research, vol. 37, pp. 275–286, 1981.
[28] Nguyen, C.T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., Angue Mintsa, H., “Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon,” International Journal of Heat and Fluid Flow, vol. 28, pp. 1492–1506, 2007.
[29] Mohsin, S., Maqbool, A., and Khan, W.A., “Optimization of cylindrical pin-fin heat sinks using genetic algorithms,” Components and Packaging Technologies, IEEE Transactions on, vol. 32, pp. 44‒52, 2009.
[30] Kim, K.Y., and Shin, D.Y., “Optimization of a staggered dimpled surface in a cooling channel using Kriging model,” International Journal of Thermal Sciences, vol. 47, pp.1464‒1472, 2008.
[31] Kim, H.M., Moom, M.A., and Kim, K.Y., “Multi-objective optimization of a cooling channel with staggered elliptic dimples,” Energy, vol. 36, pp.3419‒3428, 2011.
[32] Wang, Y., He, Y.L., Mei, D.H., and Tao, W.Q., “Optimization design of slotted fin by numerical simulation coupled with genetic algorithm,” Applied Energy, vol. 88, pp. 4441‒4450, 2011.
[33] Bagley, J.D., The behavior of adaptive systems which employ genetic and correlation algorithms, University of Michigan, 1967.
[34] Holland, J.H., Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence: U Michigan Press, 1975.
[35] Goldberg, D.E., Genetic algorithms in search, optimization, and machine learning: Addison-Wesley Reading Menlo Park, 1989.
[36] Davis, L., Handbook of Genetic Algorithms: Van Nostrand Reinhold New York, 1991.
[37] Koza, J.R., Genetic Programming: On the Programming of computers by means of natural selection: MIT press, 1992.
[38] Chai, L., Xia, G.D., Wang, L., Zhou, M.Z., Cui, Z.Z., “Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections,” International Journal Heat and Mass Transfer, vol.62, pp. 741‒751, 2013.
[39] Xia, G.D., Zhai, Y.L., Cui, Z.Z., “Numerical investigation of thermal enhancement in a micro heat sink with fan-shaped reentrant cavities and internal ribs,” Applied Thermal Engineering, vol.58, pp.52‒60, 2013.
[40] Masoumi, N., Sohrabi, N., Behzadmehr, A., “A new model for calculating the effective viscosity of nanofluids,” Journal of Physics D: Applied Physics, vol. 42, 055501, 2009.
[41] Sasmito, A.P., Kurnia, J.C., Mujumdar, A.S., “Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes,” Nanoscale Research Letters, vol. 6 (1), pp.1‒14, 2011.
[42] Ishii, M., Mishima, K., “Thermo-fluid dynamic theory of two-phase flow,” Paris: Eyrolles, 1975.
[43] Manninen, M., Taivassalo, V., Kallio, S., “On the mixture model for multiphase flow,” VTT Publications 288. Technical Research Center of Finland., 1996.
[44] Schiller, L., Naumann, A., “A drag coefficient correlation,” Z. Ver. Deutsch. Ing., vol.77, pp. 318‒320, 1935.
[45] Miller, A., Gidaspow, D., “Dense, vertical gas-solid flow in a pipe,” AIChE J., vol.38, pp. 1801‒1815, 1992.
[46] Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: McGraw-Hill, 1980.
[47] Pantankar, S.V., Spalding, D.B., A calculation process for heat, mass and momentum transfer in three-dimension parabolic flows, International Journal of Heat and Mass Transfer, vol.15, pp. 1787-1086, 1971.
[48] Box, G.E.P., Wilson, K.B., On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society. Series B (Methodological), vol.13, pp. 1-45, 1951.
[49] Bagley, J.D., “The behavior of adaptive system which employ genetic and correlation algorithm,” Dissertation Abstracts International, vol.28, 1967.
[50] De Jong, K.A., “Analysis of the behavior of a class of genetic adaptive systems,” PhD Dissertation, University of Michigan, 1975.
[51] Goldberg, D.E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley, 1989.
[52] Davis, L.D., “Handbook of Genetic Algorithms,” Van Nostrand Reinhold, 1991.
[53] Koza, J.R., “Genetic Programming, on the Programming of Computers by Means of Natural Selection, MIT Press, 1992.
[54] Holland, J., “Genetic algorithms and the optimal allocations of trials,” SIAM Journal of Computing, Vol.2, pp.88-105, 1973.
[55] Kandlikar, S.G., Garimella, S., Li, D.Q., Colin, S., King, M.R., Heat Transfer and Fluid Flow in Minichannels and Microchannel, Elsevier, 2005.
校內:2018-01-01公開