| 研究生: |
李松穆 Lee, Sung-Mu |
|---|---|
| 論文名稱: |
利用磁振造影之整合分析、腦活化實驗派典及有效性連結分析探討行為促發與重複抑制 Examining behavioral priming and fMRI repetition suppression with meta-analysis, fMRI activation in a new paradigm and effective connectivity analysis |
| 指導教授: |
林君昱
Lin, Chun-Yu |
| 共同指導教授: |
李佳穎
Lee, Chia-Ying |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 跨領域神經科學國際博士學位學程 TIGP on The Interdisciplinary Neuroscience |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 促發 、重複抑制 、成分歷程 、刺激-反應連結 、整合分析 、功能性磁振造影 、動態因果模型 |
| 外文關鍵詞: | priming, repetition suppression, component processes, stimulus-response bindings, meta-analysis, fMRI, dynamic causal modelling |
| 相關次數: | 點閱:161 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
刺激重複出現會造成反應時間縮短和神經活化降低的現象,分別稱作促發(priming)和重複抑制(repetition suppression)。它們被認為反應了跟刺激處理有關的成分歷程(component processes)在重複時加速,這些歷程像是知覺、語意和概念的處理。然而,這兩種現象也可能反應了刺激-反應連結(stimulus-response bindings)的提取,藉由這樣的連結,我們可以跳過前述的歷程直接對重複的刺激做出反應。
促發和重複抑制背後的機制仍然不清楚。在這篇論文的第二章中,我們先將過去65篇研究促發的功能性磁振造影(fMRI)結果做整合分析(meta-analysis),發現不論是在偏重知覺處理或概念處理的作業中,重複抑制常發生在額下回(inferior frontal gyrus)和梭狀回(fusiform gyrus),這樣的結果較不支持成分歷程的觀點,可能的另一種觀點是刺激-反應連結和額葉區域有關,知覺歷程加速和梭狀回有關。在第三章中,我們利用多迴訊(multi-echo)序列的功能性磁振造影實驗分離知覺處理、語意處理、概念處理和刺激-反應連結的效果,發現行為結果受到刺激-反應連結的影響很大,也就是不管作業中重複的成分歷程為何,只要受試者對重複的刺激能用相同的按鍵反應,就會產生促發,但是影像結果沒有發現明顯的各種成分歷程或是刺激-反應連結的效果。在第四章中,為了檢驗四個重複抑制的神經理論(疲勞、銳化、預期編碼和共振),我們利用動態因果模型(dynamic causal modelling)分析公開的功能性磁振造影資料,計算腦區之間的有效性連結,發現人臉刺激的重複出現會調節特定腦區之間的有效性連結,符合預期編碼和共振理論的預期。
總結來說,這篇論文的結果顯示在測量反應時間的分類作業中,刺激-反應連結的提取最影響行為促發,雖然各個腦區發生重複抑制的原因仍然沒有解決,我們的結果指出腦區之間連結的改變也值得關注。
Repeated presentations of stimuli lead to reduced reaction time, called priming, and decreased neural responses, called repetition suppression (RS). Priming and RS are thought to reflect the facilitation of component processes involved in the initial and repeated presentations of a stimulus, such as perceptual, lexical and conceptual processes. However, they can also reflect the retrieval of stimulus-response bindings, which bypass some of these processes.
The mechanisms underlying these two phenomena of priming and RS remain unclear. In Chapter 2 of this thesis, a meta-analysis of 65 fMRI studies on priming was performed to determine which regions are consistently associated with RS. We found that RS in inferior frontal gyrus and fusiform gyrus was found for both perceptual and conceptual tasks. These results question the simple distinction between conceptual and perceptual priming based on the component processes view, and suggest an alternative account in terms of stimulus-response bindings in frontal regions and perceptual facilitation in fusiform gyrus. In Chapter 3, an fMRI experiment with a multi-echo sequence was conducted to separate conceptual and lexical processes from perceptual process and stimulus-response bindings. We again found a dominant effect of stimulus-response bindings on behavior, but our imaging results did not show any clear effect of component processes or stimulus-response bindings. In Chapter 4, we conducted dynamic causal modelling (DCM) on a public fMRI dataset to test predictions from four models of RS (Fatigue, Sharpening, Predictive Coding and Synchronization) in terms of effective connectivity between brain regions. The effects of face perception and recognition were examined as well. The main result is the modulation by face repetition of effective connectivity between regions, supporting the Predictive Coding and Synchronization models.
Taken together, our results demonstrate that the retrieval of stimulus-response bindings dominates behavioral priming, at least in speeded RT classification tasks. Although the cause of RS in various brain regions was not resolved, our results demonstrate the importance of also considering changes in effective connectivity between stimulus-selective regions.
Auksztulewicz, R., & Friston, K. J. (2016). Repetition suppression and its contextual determinants in predictive coding. Cortex, 80, 125–140. https://doi.org/10.1016/j.cortex.2015.11.024
Avidan, G., Hasson, U., Hendler, T., Zohary, E., & Malach, R. (2002). Analysis of the Neuronal Selectivity Underlying Low fMRI Signals. Current Biology, 12(12), 964–972. https://doi.org/10.1016/S0960-9822(02)00872-2
Ballesteros, S., Bischof, G. N., Goh, J. O., & Park, D. C. (2013). Neural correlates of conceptual object priming in young and older adults: An event-related functional magnetic resonance imaging study. Neurobiology of Aging, 34(4), 1254–1264. https://doi.org/10.1016/j.neurobiolaging.2012.09.019
Baron, S. G., & Osherson, D. (2011). Evidence for conceptual combination in the left anterior temporal lobe. NeuroImage, 55(4), 1847–1852. https://doi.org/10.1016/j.neuroimage.2011.01.066
Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical Microcircuits for Predictive Coding. Neuron, 76(4), 695–711. https://doi.org/10.1016/j.neuron.2012.10.038
Bemis, D. K., & Pylkkänen, L. (2011). Simple Composition: A Magnetoencephalography Investigation into the Comprehension of Minimal Linguistic Phrases. Journal of Neuroscience, 31(8), 2801–2814. https://doi.org/10.1523/JNEUROSCI.5003-10.2011
Bergerbest, D., Gabrieli, J. D. E., Whitfield-Gabrieli, S., Kim, H., Stebbins, G. T., Bennett, D. A., & Fleischman, D. A. (2009). Age-associated reduction of asymmetry in prefrontal function and preservation of conceptual repetition priming. NeuroImage, 45(1), 237–246. https://doi.org/10.1016/j.neuroimage.2008.10.019
Blaxton, T. A. (1989). Investigating dissociations among memory measures: Support for a transfer-appropriate processing framework. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(4), 657–668. https://doi.org/10.1037/0278-7393.15.4.657
Brooks, S. J., Savov, V., Allzén, E., Benedict, C., Fredriksson, R., & Schiöth, H. B. (2012). Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visual cortex: A systematic meta-analysis of fMRI studies. NeuroImage, 59(3), 2962–2973. https://doi.org/10.1016/j.neuroimage.2011.09.077
Bruss, P. J., & Mitchell, D. B. (2009). Memory systems, processes, and tasks: Taxonomic clarification via factor analysis. The American Journal of Psychology, 122(2), 175–189.
Buckner, R. L., Petersen, S. E., Ojemann, J. G., Miezin, F. M., Squire, L. R., & Raichle, M. E. (1995). Functional anatomical studies of explicit and implicit memory retrieval tasks. The Journal of Neuroscience, 15(1), 12–29.
Bunzeck, N., Schütze, H., & Düzel, E. (2006). Category-specific organization of prefrontal response-facilitation during priming. Neuropsychologia, 44(10), 1765–1776. https://doi.org/10.1016/j.neuropsychologia.2006.03.019
Cabeza, R., & Moscovitch, M. (2013). Memory Systems, Processing Modes, and Components Functional Neuroimaging Evidence. Perspectives on Psychological Science, 8(1), 49–55. https://doi.org/10.1177/1745691612469033
Chen, G., Pine, D. S., Brotman, M. A., Smith, A. R., Cox, R. W., Taylor, P. A., & Haller, S. P. (2021). Hyperbolic trade-off: The importance of balancing trial and subject sample sizes in neuroimaging. BioRxiv, 2021.07.15.452548. https://doi.org/10.1101/2021.07.15.452548
Chiou, R., & Lambon Ralph, M. A. (2019). Unveiling the dynamic interplay between the hub- and spoke-components of the brain’s semantic system and its impact on human behaviour. NeuroImage, 199, 114–126. https://doi.org/10.1016/j.neuroimage.2019.05.059
Chouinard, P. A., & Goodale, M. A. (2012). FMRI-adaptation to highly-rendered color photographs of animals and manipulable artifacts during a classification task. NeuroImage, 59(3), 2941–2951. https://doi.org/10.1016/j.neuroimage.2011.09.073
Cowell, R. A., Barense, M. D., & Sadil, P. S. (2019). A Roadmap for Understanding Memory: Decomposing Cognitive Processes into Operations and Representations. ENeuro, 6(4). https://doi.org/10.1523/ENEURO.0122-19.2019
Cubelli, R., & Della Sala, S. (2020). Definition: Implicit memory. Cortex, 125, 345. https://doi.org/10.1016/j.cortex.2020.01.011
Damasio, A. R., Tranel, D., & Damasio, H. (1990). Face Agnosia and the Neural Substrates of Memory. Annual Review of Neuroscience, 13(1), 89–109. https://doi.org/10.1146/annurev.ne.13.030190.000513
Daselaar, S. M., Veltman, D. J., Rombouts, S. A. R. B., Raaijmakers, J. G. W., & Jonker, C. (2005). Aging affects both perceptual and lexical/semantic components of word stem priming: An event-related fMRI study. Neurobiology of Learning and Memory, 83(3), 251–262. https://doi.org/10.1016/j.nlm.2005.01.005
de Gardelle, V., Stokes, M., Johnen, V. M., Wyart, V., & Summerfield, C. (2013). Overlapping multivoxel patterns for two levels of visual expectation. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00158
Denkinger, B., & Koutstaal, W. (2009). Perceive-decide-act, perceive-decide-act: How abstract is repetition-related decision learning? Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(3), 742–756. https://doi.org/10.1037/a0015263
Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences, 93(24), 13494–13499. https://doi.org/10.1073/pnas.93.24.13494
Dobbins, I. G., Schnyer, D. M., Verfaellie, M., & Schacter, D. L. (2004). Cortical activity reductions during repetition priming can result from rapid response learning. Nature, 428(6980), 316–319. https://doi.org/10.1038/nature02400
Dolan, R. J., Fink, G. R., Rolls, E., Booth, M., Holmes, A., Frackowiak, R. S. J., & Friston, K. J. (1997). How the brain learns to see objects and faces in an impoverished context. Nature, 389(6651), 596–599. https://doi.org/10.1038/39309
Donaldson, D. I., Petersen, S. E., & Buckner, R. L. (2001). Dissociating Memory Retrieval Processes Using fMRI. Neuron, 31(6), 1047–1059. https://doi.org/10.1016/S0896-6273(01)00429-9
Duchaine, B., & Yovel, G. (2015). A Revised Neural Framework for Face Processing. Annual Review of Vision Science, 1(1), 393–416. https://doi.org/10.1146/annurev-vision-082114-035518
Eger, E. (2004). BOLD Repetition Decreases in Object-Responsive Ventral Visual Areas Depend on Spatial Attention. Journal of Neurophysiology, 92(2), 1241–1247. https://doi.org/10.1152/jn.00206.2004
Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59(3), 2349–2361. https://doi.org/10.1016/j.neuroimage.2011.09.017
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926. https://doi.org/10.1002/hbm.20718
Eickhoff, S. B., Nichols, T. E., Laird, A. R., Hoffstaedter, F., Amunts, K., Fox, P. T., Bzdok, D., & Eickhoff, C. R. (2016). Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. NeuroImage, 137, 70–85. https://doi.org/10.1016/j.neuroimage.2016.04.072
Elbich, D. B., Molenaar, P. C. M., & Scherf, K. S. (2019). Evaluating the organizational structure and specificity of network topology within the face processing system. Human Brain Mapping, 40(9), 2581–2595. https://doi.org/10.1002/hbm.24546
Epstein, R. A., Parker, W. E., & Feiler, A. M. (2008). Two Kinds of fMRI Repetition Suppression? Evidence for Dissociable Neural Mechanisms. Journal of Neurophysiology, 99(6), 2877–2886. https://doi.org/10.1152/jn.90376.2008
Ewbank, M. P., Henson, R. N., Rowe, J. B., Stoyanova, R. S., & Calder, A. J. (2013). Different Neural Mechanisms within Occipitotemporal Cortex Underlie Repetition Suppression across Same and Different-Size Faces. Cerebral Cortex, 23(5), 1073–1084. https://doi.org/10.1093/cercor/bhs070
Ewbank, M. P., Lawson, R. P., Henson, R. N., Rowe, J. B., Passamonti, L., & Calder, A. J. (2011). Changes in “Top-Down” Connectivity Underlie Repetition Suppression in the Ventral Visual Pathway. Journal of Neuroscience, 31(15), 5635–5642. https://doi.org/10.1523/JNEUROSCI.5013-10.2011
Fairhall, S. L., & Ishai, A. (2007). Effective Connectivity within the Distributed Cortical Network for Face Perception. Cerebral Cortex, 17(10), 2400–2406. https://doi.org/10.1093/cercor/bhl148
Fleischman, D. A. (2007). Repetition Priming in Aging and Alzheimer’s Disease: An Integrative Review and Future Directions. Cortex, 43(7), 889–897. https://doi.org/10.1016/S0010-9452(08)70688-9
Fleischman, D. A., E, D., Reminger, S., Rinaldi, J., Morrell, F., & Wilson, R. (1995). Conceptual priming in perceptual identification for patients with Alzheimer’s disease and a patient with right occipital lobectomy. Neuropsychology, 9(2), 187–197. https://doi.org/10.1037/0894-4105.9.2.187
Fleischman, D. A., & Gabrieli, J. D. E. (1998). Repetition priming in normal aging and Alzheimer’s disease: A review of findings and theories. Psychology and Aging, 13(1), 88–119. https://doi.org/10.1037/0882-7974.13.1.88
Fleischman, D. A., Wilson, R. S., Gabrieli, J. D. E., Schneider, J. A., Bienias, J. L., & Bennett, D. A. (2005). Implicit memory and Alzheimer’s disease neuropathology. Brain, 128(9), 2006–2015. https://doi.org/10.1093/brain/awh559
Francis, W. S. (2020). Shared core meanings and shared associations in bilingual semantic memory: Evidence from research on implicit memory. International Journal of Bilingualism, 24(3), 464–477. https://doi.org/10.1177/1367006918814375
Francis, W. S., Corral, N. I., Jones, M. L., & Sáenz, S. P. (2008). Decomposition of repetition priming components in picture naming. Journal of Experimental Psychology: General, 137(3), 566–590. https://doi.org/10.1037/0096-3445.137.3.566
Francis, W. S., & Sáenz, S. P. (2007). Repetition priming endurance in picture naming and translation: Contributions of component processes. Memory & Cognition, 35(3), 481–493. https://doi.org/10.3758/BF03193288
Frässle, S., Paulus, F. M., Krach, S., Schweinberger, S. R., Stephan, K. E., & Jansen, A. (2016). Mechanisms of hemispheric lateralization: Asymmetric interhemispheric recruitment in the face perception network. NeuroImage, 124, 977–988. https://doi.org/10.1016/j.neuroimage.2015.09.055
Fries, P. (2009). Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical Computation. Annual Review of Neuroscience, 32(1), 209–224. https://doi.org/10.1146/annurev.neuro.051508.135603
Frings, C., Moeller, B., & Rothermund, K. (2013). Retrieval of event files can be conceptually mediated. Attention, Perception, & Psychophysics, 75(4), 700–709. https://doi.org/10.3758/s13414-013-0431-3
Friston, K. J. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302. https://doi.org/10.1016/S1053-8119(03)00202-7
Furl, N. (2015). Structural and effective connectivity reveals potential network-based influences on category-sensitive visual areas. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00253
Furl, N., Henson, R. N., Friston, K. J., & Calder, A. J. (2015). Network Interactions Explain Sensitivity to Dynamic Faces in the Superior Temporal Sulcus. Cerebral Cortex, 25(9), 2876–2882. https://doi.org/10.1093/cercor/bhu083
Gabrieli, J. D. E., Fleischman, D. A., Keane, M. M., Reminger, S. L., & Morrell, F. (1995). Double Dissociation Between Memory Systems Underlying Explicit and Implicit Memory in the Human Brain. Psychological Science, 6(2), 76–82. https://doi.org/10.1111/j.1467-9280.1995.tb00310.x
Gabrieli, J. D. E., Vaidya, C. J., Stone, M., Francis, W. S., Thompson-Schill, S. L., Fleischman, D. A., Tinklenberg, J. R., Yesavage, J. A., & Wilson, R. S. (1999). Convergent behavioral and neuropsychological evidence for a distinction between identification and production forms of repetition priming. Journal of Experimental Psychology: General, 128(4), 479–498. https://doi.org/10.1037/0096-3445.128.4.479
Gainotti, G., & Marra, C. (2011). Differential Contribution of Right and Left Temporo-Occipital and Anterior Temporal Lesions to Face Recognition Disorders. Frontiers in Human Neuroscience, 5. https://doi.org/10.3389/fnhum.2011.00055
Ganel, T., Gonzalez, C. L. R., Valyear, K. F., Culham, J. C., Goodale, M. A., & Köhler, S. (2006). The relationship between fMRI adaptation and repetition priming. NeuroImage, 32(3), 1432–1440. https://doi.org/10.1016/j.neuroimage.2006.05.039
Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), 310–319. https://doi.org/10.1016/j.neuroimage.2012.06.026
Gentile, F., Ales, J., & Rossion, B. (2017). Being BOLD: The neural dynamics of face perception. Human Brain Mapping, 38(1), 120–139. https://doi.org/10.1002/hbm.23348
George, N., Dolan, R. J., Fink, G. R., Baylis, G. C., Russell, C., & Driver, J. (1999). Contrast polarity and face recognition in the human fusiform gyrus. Nature Neuroscience, 2(6), 574–580. https://doi.org/10.1038/9230
Ghuman, A. S., Bar, M., Dobbins, I. G., & Schnyer, D. M. (2008). The effects of priming on frontal-temporal communication. Proceedings of the National Academy of Sciences, 105(24), 8405–8409. https://doi.org/10.1073/pnas.0710674105
Gilbert, J. R., Gotts, S. J., Carver, F. W., & Martin, A. (2010). Object repetition leads to local increases in the temporal coordination of neural responses. Frontiers in Human Neuroscience, 4. https://doi.org/10.3389/fnhum.2010.00030
Gomes, C. A., Figueiredo, P., & Mayes, A. (2016). Priming for novel object associations: Neural differences from object item priming and equivalent forms of recognition. Hippocampus, 26(4), 472–491. https://doi.org/10.1002/hipo.22537
Gong, L., Wang, J., Yang, X., Feng, L., Li, X., Gu, C., Wang, M., Hu, J., & Cheng, H. (2016). Dissociation between Conceptual and Perceptual Implicit Memory: Evidence from Patients with Frontal and Occipital Lobe Lesions. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00722
Gotts, S. J. (2016). Incremental learning of perceptual and conceptual representations and the puzzle of neural repetition suppression. Psychonomic Bulletin & Review, 23(4), 1055–1071. https://doi.org/10.3758/s13423-015-0855-y
Gotts, S. J., Chow, C. C., & Martin, A. (2012). Repetition priming and repetition suppression: Multiple mechanisms in need of testing. Cognitive Neuroscience, 3(3–4), 250–259. https://doi.org/10.1080/17588928.2012.697054
Grill-Spector, K., Henson, R. N., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14–23. https://doi.org/10.1016/j.tics.2005.11.006
Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., & Malach, R. (1999). Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex. Neuron, 24(1), 187–203. https://doi.org/10.1016/S0896-6273(00)80832-6
Grill-Spector, K., & Malach, R. (2001). fMR-adaptation: A tool for studying the functional properties of human cortical neurons. Acta Psychologica, 107(1), 293–321. https://doi.org/10.1016/S0001-6918(01)00019-1
Gross, C. G., Schiller, P. H., Wells, C., & Gerstein, G. L. (1967). Single-unit activity in temporal association cortex of the monkey. Journal of Neurophysiology, 30(4), 833–843. https://doi.org/10.1152/jn.1967.30.4.833
Grosse, D. A., Wilson, R. S., & Fox, J. H. (1990). Preserved word-stem-completion priming of semantically encoded information in Alzheimer’s disease. Psychology and Aging, 5(2), 304–306. https://doi.org/10.1037/0882-7974.5.2.304
Grotheer, M., & Kovács, G. (2015). The relationship between stimulus repetitions and fulfilled expectations. Neuropsychologia, 67, 175–182. https://doi.org/10.1016/j.neuropsychologia.2014.12.017
Grotheer, M., & Kovács, G. (2016). Can predictive coding explain repetition suppression? Cortex, 80, 113–124. https://doi.org/10.1016/j.cortex.2015.11.027
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233. https://doi.org/10.1016/S1364-6613(00)01482-0
Henke, K. (2010). A model for memory systems based on processing modes rather than consciousness. Nature Reviews Neuroscience, 11(7), 523–532. https://doi.org/10.1038/nrn2850
Henson, R. N. (2003). Neuroimaging studies of priming. Progress in Neurobiology, 70(1), 53–81. https://doi.org/10.1016/S0301-0082(03)00086-8
Henson, R. N. (2016). Repetition suppression to faces in the fusiform face area: A personal and dynamic journey. Cortex, 80, 174–184. https://doi.org/10.1016/j.cortex.2015.09.012
Henson, R. N., Eckstein, D., Waszak, F., Frings, C., & Horner, A. J. (2014). Stimulus–response bindings in priming. Trends in Cognitive Sciences, 18(7), 376–384. https://doi.org/10.1016/j.tics.2014.03.004
Henson, R. N., Goshen-Gottstein, Y., Ganel, T., Otten, L. J., Quayle, A., & Rugg, M. D. (2003). Electrophysiological and Haemodynamic Correlates of Face Perception, Recognition and Priming. Cerebral Cortex, 13(7), 793–805. https://doi.org/10.1093/cercor/13.7.793
Henson, R. N., Horner, A. J., Greve, A., Cooper, E., Gregori, M., Simons, J. S., Erzinçlioğlu, S., Browne, G., & Kapur, N. (2017). No effect of hippocampal lesions on stimulus-response bindings. Neuropsychologia, 103, 106–114. https://doi.org/10.1016/j.neuropsychologia.2017.07.024
Henson, R. N., & Mouchlianitis, E. (2007). Effect of spatial attention on stimulus-specific haemodynamic repetition effects. NeuroImage, 35(3), 1317–1329. https://doi.org/10.1016/j.neuroimage.2007.01.019
Henson, R. N., Rylands, A., Ross, E., Vuilleumeir, P., & Rugg, M. D. (2004). The effect of repetition lag on electrophysiological and haemodynamic correlates of visual object priming. NeuroImage, 21(4), 1674–1689. https://doi.org/10.1016/j.neuroimage.2003.12.020
Henson, R. N., Shallice, T., & Dolan, R. (2000). Neuroimaging Evidence for Dissociable Forms of Repetition Priming. Science, 287(5456), 1269–1272. https://doi.org/10.1126/science.287.5456.1269
Henson, R. N., Shallice, T., Gorno-Tempini, M. L., & Dolan, R. J. (2002). Face repetition effects in implicit and explicit memory tests as measured by fMRI. Cerebral Cortex, 12(2), 178–186.
Heusser, A. C., Awipi, T., & Davachi, L. (2013). The ups and downs of repetition: Modulation of the perirhinal cortex by conceptual repetition predicts priming and long-term memory. Neuropsychologia, 51(12), 2333–2343. https://doi.org/10.1016/j.neuropsychologia.2013.04.018
Horner, A. J., & Henson, R. N. (2008). Priming, response learning and repetition suppression. Neuropsychologia, 46(7), 1979–1991. https://doi.org/10.1016/j.neuropsychologia.2008.01.018
Horner, A. J., & Henson, R. N. (2009). Bindings between stimuli and multiple response codes dominate long-lag repetition priming in speeded classification tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(3), 757–779. https://doi.org/10.1037/a0015262
Horner, A. J., & Henson, R. N. (2011a). Stimulus–response bindings code both abstract and specific representations of stimuli: Evidence from a classification priming design that reverses multiple levels of response representation. Memory & Cognition, 39(8), 1457. https://doi.org/10.3758/s13421-011-0118-8
Horner, A. J., & Henson, R. N. (2011b). Repetition suppression in occipitotemporal cortex despite negligible visual similarity: Evidence for postperceptual processing? Human Brain Mapping, 32(10), 1519–1534. https://doi.org/10.1002/hbm.21124
Horner, A. J., & Henson, R. N. (2012). Incongruent Abstract Stimulus–Response Bindings Result in Response Interference: FMRI and EEG Evidence from Visual Object Classification Priming. Journal of Cognitive Neuroscience, 24(3), 760–773. https://doi.org/10.1162/jocn_a_00163
Humphries, C., Binder, J. R., Medler, D. A., & Liebenthal, E. (2007). Time course of semantic processes during sentence comprehension: An fMRI study. NeuroImage, 36(3), 924–932. https://doi.org/10.1016/j.neuroimage.2007.03.059
Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1), 101–144. https://doi.org/10.1016/j.cognition.2002.06.001
Ishai, A., Schmidt, C. F., & Boesiger, P. (2005). Face perception is mediated by a distributed cortical network. Brain Research Bulletin, 67(1), 87–93. https://doi.org/10.1016/j.brainresbull.2005.05.027
Jacoby, L. L. (1983). Remembering the data: Analyzing interactive processes in reading. Journal of Verbal Learning and Verbal Behavior, 22(5), 485–508. https://doi.org/10.1016/S0022-5371(83)90301-8
Jiang, X., Bradley, E., Rini, R. A., Zeffiro, T., VanMeter, J., & Riesenhuber, M. (2007). Categorization Training Results in Shape- and Category-Selective Human Neural Plasticity. Neuron, 53(6), 891–903. https://doi.org/10.1016/j.neuron.2007.02.015
Jiang, X., Rosen, E., Zeffiro, T., VanMeter, J., Blanz, V., & Riesenhuber, M. (2006). Evaluation of a Shape-Based Model of Human Face Discrimination Using fMRI and Behavioral Techniques. Neuron, 50(1), 159–172. https://doi.org/10.1016/j.neuron.2006.03.012
Jin, M., & Glickfeld, L. L. (2020). Magnitude, time course, and specificity of rapid adaptation across mouse visual areas. Journal of Neurophysiology, 124(1), 245–258. https://doi.org/10.1152/jn.00758.2019
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. Journal of Neuroscience, 17(11), 4302–4311. https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997
Keane, M. M., Gabrieli, J. D. E., Mapstone, H. C., Johnson, K. A., & Corkin, S. (1995). Double dissociation of memory capacities after bilateral occipital-lobe or medial temporal-lobe lesions. Brain, 118(5), 1129–1148. https://doi.org/10.1093/brain/118.5.1129
Kim, H. (2016). Brain regions that show repetition suppression and enhancement: A meta-analysis of 137 neuroimaging experiments. Human Brain Mapping, n/a-n/a. https://doi.org/10.1002/hbm.23492
Kim, H. (2019). Neural correlates of explicit and implicit memory at encoding and retrieval: A unified framework and meta-analysis of functional neuroimaging studies. Biological Psychology, 145, 96–111. https://doi.org/10.1016/j.biopsycho.2019.04.006
Kim, J., & Yassa, M. A. (2013). Assessing recollection and familiarity of similar lures in a behavioral pattern separation task. Hippocampus, 23(4), 287–294. https://doi.org/10.1002/hipo.22087
Korsnes, M. S., & Magnussen, S. J. (2014). FMRI evidence for dissociation between priming and conscious recognition. Journal of Integrative Neuroscience, 13(03), 509–517. https://doi.org/10.1142/S0219635214500149
Korsnes, M. S., Wright, A. A., & Gabrieli, J. D. E. (2008). An fMRI analysis of object priming and workload in the precuneus complex. Neuropsychologia, 46(5), 1454–1462. https://doi.org/10.1016/j.neuropsychologia.2007.12.028
Korzeniewska, A., Wang, Y., Benz, H. L., Fifer, M. S., Collard, M., Milsap, G., Cervenka, M. C., Martin, A., Gotts, S. J., & Crone, N. E. (2020). Changes in human brain dynamics during behavioral priming and repetition suppression. Progress in Neurobiology, 189, 101788. https://doi.org/10.1016/j.pneurobio.2020.101788
Kovács, G., & Schweinberger, S. R. (2016). Repetition suppression – An integrative view. Cortex, 80, 1–4. https://doi.org/10.1016/j.cortex.2016.04.022
Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42–55. https://doi.org/10.1038/nrn.2016.150
Lamichhane, B., & Dhamala, M. (2015). Perceptual decision-making difficulty modulates feedforward effective connectivity to the dorsolateral prefrontal cortex. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00498
Larsson, J., Solomon, S. G., & Kohn, A. (2016). FMRI adaptation revisited. Cortex, 80, 154–160. https://doi.org/10.1016/j.cortex.2015.10.026
Lee, S.-M., Henson, R. N., & Lin, C.-Y. (2020). Neural Correlates of Repetition Priming: A Coordinate-Based Meta-Analysis of fMRI Studies. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.565114
Li, L., Miller, E. K., & Desimone, R. (1993). The representation of stimulus familiarity in anterior inferior temporal cortex. Journal of Neurophysiology, 69(6), 1918–1929. https://doi.org/10.1152/jn.1993.69.6.1918
Lohse, M., Garrido, L., Driver, J., Dolan, R. J., Duchaine, B. C., & Furl, N. (2016). Effective Connectivity from Early Visual Cortex to Posterior Occipitotemporal Face Areas Supports Face Selectivity and Predicts Developmental Prosopagnosia. Journal of Neuroscience, 36(13), 3821–3828. https://doi.org/10.1523/JNEUROSCI.3621-15.2016
Lustig, C., & Buckner, R. L. (2004). Preserved Neural Correlates of Priming in Old Age and Dementia. Neuron, 42(5), 865–875. https://doi.org/10.1016/j.neuron.2004.04.002
Maccotta, L., & Buckner, R. L. (2004). Evidence for neural effects of repetition that directly correlate with behavioral priming. Cognitive Neuroscience, Journal Of, 16(9), 1625–1632. https://doi.org/10.1162/0898929042568451
Makukhin, K., & Bolland, S. (2014). Dissociable Forms of Repetition Priming: A Computational Model. Neural Computation, 26(4), 712–738. https://doi.org/10.1162/NECO_a_00569
McMahon, D. B. T., & Olson, C. R. (2007). Repetition Suppression in Monkey Inferotemporal Cortex: Relation to Behavioral Priming. Journal of Neurophysiology, 97(5), 3532–3543. https://doi.org/10.1152/jn.01042.2006
Meiran, N., & Jelicic, M. (1995). Implicit memory in Alzheimer’s disease: A meta-analysis. Neuropsychology, 9(3), 291–303. https://doi.org/10.1037/0894-4105.9.3.291
Meneguzzo, P., Tsakiris, M., Schioth, H. B., Stein, D. J., & Brooks, S. J. (2014). Subliminal versus supraliminal stimuli activate neural responses in anterior cingulate cortex, fusiform gyrus and insula: A meta-analysis of fMRI studies. BMC Psychology, 2, 52. https://doi.org/10.1186/s40359-014-0052-1
Moher, D. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine, 151(4), 264. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
Monti, L. A., Gabrieli, J. D. E., Reminger, S. L., Rinaldi, J. A., Wilson, R. S., & Fleischman, D. A. (1996). Differential effects of aging and Alzheimer’s disease on conceptual implicit and explicit memory. Neuropsychology, 10(1), 101–112. https://doi.org/10.1037/0894-4105.10.1.101
Müller, N. G., Strumpf, H., Scholz, M., Baier, B., & Melloni, L. (2013). Repetition Suppression versus Enhancement—It’s Quantity That Matters. Cerebral Cortex, 23(2), 315–322. https://doi.org/10.1093/cercor/bhs009
Poppenk, J., McIntosh, A. R., & Moscovitch, M. (2016). FMRI evidence of equivalent neural suppression by repetition and prior knowledge. Neuropsychologia. https://doi.org/10.1016/j.neuropsychologia.2016.06.034
Prull, M. W., & Spataro, P. (2017). Editorial: The Role of the Distinctions between Identification/Production and Perceptual/Conceptual Processes in Implicit Memory: Findings from Cognitive Psychology, Neuroscience and Neuropsychology. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01129
Race, E. A., Shanker, S., & Wagner, A. D. (2008). Neural Priming in Human Frontal Cortex: Multiple Forms of Learning Reduce Demands on the Prefrontal Executive System. Journal of Cognitive Neuroscience, 21(9), 1766–1781. https://doi.org/10.1162/jocn.2009.21132
Rice, G. E., Lambon Ralph, M. A., & Hoffman, P. (2015). The Roles of Left Versus Right Anterior Temporal Lobes in Conceptual Knowledge: An ALE Meta-analysis of 97 Functional Neuroimaging Studies. Cerebral Cortex, 25(11), 4374–4391. https://doi.org/10.1093/cercor/bhv024
Richardson-Klavehn, A., & Gardiner, J. M. (1998). Depth-of-processing effects on priming in stem completion: Tests of the voluntary-contamination, conceptual-processing, and lexical-processing hypotheses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(3), 593–609. https://doi.org/10.1037/0278-7393.24.3.593
Rodd, J. M., Vitello, S., Woollams, A. M., & Adank, P. (2015). Localising semantic and syntactic processing in spoken and written language comprehension: An Activation Likelihood Estimation meta-analysis. Brain and Language, 141(Supplement C), 89–102. https://doi.org/10.1016/j.bandl.2014.11.012
Roediger, H. L. (1989). Explaining dissociations between implicit and explicit measures of retention: A processing account. Varieties of Memory and Consciousness : Essays in Honour of Endel Tulving. https://ci.nii.ac.jp/naid/10008099860/
Roediger, H. L., & McDermott, K. B. (1993). Implicit memory in normal subjects. Handbook of Neuropsychology, 8, 63–131.
Rossion, B. (2018). Damasio’s error – Prosopagnosia with intact within-category object recognition. Journal of Neuropsychology, 12(3), 357–388. https://doi.org/10.1111/jnp.12162
Rossion, B., Caldara, R., Seghier, M., Schuller, A., Lazeyras, F., & Mayer, E. (2003). A network of occipito‐temporal face‐sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain, 126(11), 2381–2395. https://doi.org/10.1093/brain/awg241
Salmon, D. P., Shimamura, A. P., Butters, N., & Smith, S. (1988). Lexical and semantic priming deficits in patients with alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 10(4), 477–494. https://doi.org/10.1080/01688638808408254
Sayres, R., & Grill-Spector, K. (2006). Object-Selective Cortex Exhibits Performance-Independent Repetition Suppression. Journal of Neurophysiology, 95(2), 995–1007. https://doi.org/10.1152/jn.00500.2005
Schacter, D. L., & Buckner, R. L. (1998). Priming and the brain. Neuron, 20(2), 185–195.
Schacter, D. L., Reiman, E., Uecker, A., Roister, M. R., Yun, L. S., & Cooper, L. A. (1995). Brain regions associated with retrieval of structurally coherent visual information. Nature, 376(6541), 587–590. https://doi.org/10.1038/376587a0
Schacter, D. L., Wig, G. S., & Stevens, W. D. (2007). Reductions in cortical activity during priming. Current Opinion in Neurobiology, 17(2), 171–176. https://doi.org/10.1016/j.conb.2007.02.001
Schnyer, D. M., Dobbins, I. G., Nicholls, L., Schacter, D. L., & Verfaellie, M. (2006). Rapid response learning in amnesia: Delineating associative learning components in repetition priming. Neuropsychologia, 44(1), 140–149. https://doi.org/10.1016/j.neuropsychologia.2005.03.027
Schott, B. H., Henson, R. N., Richardson-Klavehn, A., Becker, C., Thoma, V., Heinze, H.-J., & Düzel, E. (2005). Redefining implicit and explicit memory: The functional neuroanatomy of priming, remembering, and control of retrieval. Proceedings of the National Academy of Sciences of the United States of America, 102(4), 1257–1262. https://doi.org/10.1073/pnas.0409070102
Schweinberger, S. R., & Neumann, M. F. (2016). Repetition effects in human ERPs to faces. Cortex, 80, 141–153. https://doi.org/10.1016/j.cortex.2015.11.001
Segaert, K., Weber, K., de Lange, F. P., Petersson, K. M., & Hagoort, P. (2013). The suppression of repetition enhancement: A review of fMRI studies. Neuropsychologia, 51(1), 59–66. https://doi.org/10.1016/j.neuropsychologia.2012.11.006
Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D., & Schacter, D. L. (2003). Neural mechanisms of visual object priming: Evidence for perceptual and semantic distinctions in fusiform cortex. NeuroImage, 19(3), 613–626. https://doi.org/10.1016/S1053-8119(03)00096-X
Soldan, A., Habeck, C., Gazes, Y., & Stern, Y. (2010). Neural mechanisms of repetition priming of familiar and globally unfamiliar visual objects. Brain Research, 1343, 122–134. https://doi.org/10.1016/j.brainres.2010.04.071
Soldan, A., Zarahn, E., Hilton, H. J., & Stern, Y. (2008). Global familiarity of visual stimuli affects repetition-related neural plasticity but not repetition priming. NeuroImage, 39(1), 515–526. https://doi.org/10.1016/j.neuroimage.2007.08.011
Spataro, P., Saraulli, D., Mulligan, N. W., Cestari, V., Costanzi, M., & Rossi-Arnaud, C. (2017). Not all identification tasks are born equal: Testing the involvement of production processes in perceptual identification and lexical decision. Psychological Research, 1–15. https://doi.org/10.1007/s00426-017-0852-z
Steeves, J., Dricot, L., Goltz, H. C., Sorger, B., Peters, J., Milner, A. D., Goodale, M. A., Goebel, R., & Rossion, B. (2009). Abnormal face identity coding in the middle fusiform gyrus of two brain-damaged prosopagnosic patients. Neuropsychologia, 47(12), 2584–2592. https://doi.org/10.1016/j.neuropsychologia.2009.05.005
Steeves, J. K. E., Culham, J. C., Duchaine, B. C., Pratesi, C. C., Valyear, K. F., Schindler, I., Humphrey, G. K., Milner, A. D., & Goodale, M. A. (2006). The fusiform face area is not sufficient for face recognition: Evidence from a patient with dense prosopagnosia and no occipital face area. Neuropsychologia, 44(4), 594–609. https://doi.org/10.1016/j.neuropsychologia.2005.06.013
Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A., & Friston, K. J. (2007). Comparing hemodynamic models with DCM. NeuroImage, 38(3), 387–401. https://doi.org/10.1016/j.neuroimage.2007.07.040
Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M.-M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11(9), 1004–1006. https://doi.org/10.1038/nn.2163
Suzuki, H., & Kato, H. (1969). Neurons with visual properties in the posterior group of the thalamic nuclei. Experimental Neurology, 23(3), 353–365. https://doi.org/10.1016/0014-4886(69)90083-1
Tenpenny, P. L., & Shoben, E. J. (1992). Component processes and the utility of the conceptually-driven/data-driven distinction. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(1), 25–42. https://doi.org/10.1037/0278-7393.18.1.25
The tedana Community, Ahmed, Z., Bandettini, P. A., Bottenhorn, K. L., Caballero-Gaudes, C., Dowdle, L. T., DuPre, E., Gonzalez-Castillo, J., Handwerker, D., Heunis, S., Kundu, P., Laird, A. R., Markello, R., Markiewicz, C. J., Maullin-Sapey, T., Moia, S., Salo, T., Staden, I., Teves, J., … Whitaker, K. (2021). ME-ICA/tedana: 0.0.10. Zenodo. https://doi.org/10.5281/zenodo.4725985
Todorovic, A., & Lange, F. P. de. (2012). Repetition Suppression and Expectation Suppression Are Dissociable in Time in Early Auditory Evoked Fields. Journal of Neuroscience, 32(39), 13389–13395. https://doi.org/10.1523/JNEUROSCI.2227-12.2012
Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247(4940), 302–306. https://doi.org/10.1126/science.2296719
Turk-Browne, N. B., Yi, D.-J., & Chun, M. M. (2006). Linking Implicit and Explicit Memory: Common Encoding Factors and Shared Representations. Neuron, 49(6), 917–927. https://doi.org/10.1016/j.neuron.2006.01.030
Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 1–13. https://doi.org/10.1002/hbm.21186
Wagner, A. D., Desmond, J. E., Demb, J. B., Glover, G. H., & Gabrieli, J. D. E. (1997). Semantic Repetition Priming for Verbal and Pictorial Knowledge: A Functional MRI Study of Left Inferior Prefrontal Cortex. Journal of Cognitive Neuroscience, 9(6), 714–726. https://doi.org/10.1162/jocn.1997.9.6.714
Wagner, A. D., Koutstaal, W., Maril, A., Schacter, D. L., & Buckner, R. L. (2000). Task-specific Repetition Priming in Left Inferior Prefrontal Cortex. Cerebral Cortex, 10(12), 1176–1184. https://doi.org/10.1093/cercor/10.12.1176
Wakeman, D. G., & Henson, R. N. (2015). A multi-subject, multi-modal human neuroimaging dataset. Scientific Data, 2, 150001. https://doi.org/10.1038/sdata.2015.1
Weldon, M. S. (1991). Mechanisms underlying priming on perceptual tests. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(3), 526–541. https://doi.org/10.1037/0278-7393.17.3.526
Westerlund, M., & Pylkkänen, L. (2014). The role of the left anterior temporal lobe in semantic composition vs. Semantic memory. Neuropsychologia, 57, 59–70. https://doi.org/10.1016/j.neuropsychologia.2014.03.001
Wig, G. S. (2012). Repetition suppression and repetition priming are processing outcomes. Cognitive Neuroscience, 3(3–4), 247–248. https://doi.org/10.1080/17588928.2012.689964
Wig, G. S., Buckner, R. L., & Schacter, D. L. (2009). Repetition Priming Influences Distinct Brain Systems: Evidence From Task-Evoked Data and Resting-State Correlations. Journal of Neurophysiology, 101(5), 2632–2648. https://doi.org/10.1152/jn.91213.2008
Wig, G. S., Grafton, S. T., Demos, K. E., & Kelley, W. M. (2005). Reductions in neural activity underlie behavioral components of repetition priming. Nature Neuroscience, 8(9), 1228–1233. https://doi.org/10.1038/nn1515
Wiggs, C. L., & Martin, A. (1998). Properties and mechanisms of perceptual priming. Current Opinion in Neurobiology, 8(2), 227–233. https://doi.org/10.1016/S0959-4388(98)80144-X
Witherspoon, D., & Moscovitch, M. (1989). Stochastic independence between two implicit memory tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(1), 22–30. https://doi.org/10.1037/0278-7393.15.1.22
Wright, P., Randall, B., Clarke, A., & Tyler, L. K. (2015). The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes. Neuropsychologia, 76, 192–207. https://doi.org/10.1016/j.neuropsychologia.2015.01.041
Xiu, D., Geiger, M. J., & Klaver, P. (2015). Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion. Frontiers in Behavioral Neuroscience, 9. https://doi.org/10.3389/fnbeh.2015.00090
Xu, Y., Turk-Browne, N. B., & Chun, M. M. (2007). Dissociating Task Performance from fMRI Repetition Attenuation in Ventral Visual Cortex. The Journal of Neuroscience, 27(22), 5981–5985. https://doi.org/10.1523/JNEUROSCI.5527-06.2007
Yaple, Z., & Arsalidou, M. (2017). Negative priming: A meta-analysis of fMRI studies. Experimental Brain Research, 235(11), 3367–3374. https://doi.org/10.1007/s00221-017-5065-6
Yi, D.-J. (2005). Attentional Modulation of Learning-Related Repetition Attenuation Effects in Human Parahippocampal Cortex. Journal of Neuroscience, 25(14), 3593–3600. https://doi.org/10.1523/JNEUROSCI.4677-04.2005
Zago, L., Fenske, M. J., Aminoff, E., & Bar, M. (2005). The Rise and Fall of Priming: How Visual Exposure Shapes Cortical Representations of Objects. Cerebral Cortex, 15(11), 1655–1665. https://doi.org/10.1093/cercor/bhi060
Zeidman, P., Jafarian, A., Seghier, M. L., Litvak, V., Cagnan, H., Price, C. J., & Friston, K. J. (2019). A guide to group effective connectivity analysis, part 2: Second level analysis with PEB. NeuroImage, 200, 12–25. https://doi.org/10.1016/j.neuroimage.2019.06.032