| 研究生: |
黃品捷 Huang, Pin-Chieh |
|---|---|
| 論文名稱: |
微型分置式史特靈致冷器之混合數值分析法 Hybrid Numerical Method for Analysis of a Rotary-Split Micro-Stirling Cryocooler |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 太空系統工程研究所 Institute of Space Systems Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 史特靈致冷器 、混合數值分析法 、三維計算流體力學 、熱力學理論模型 |
| 外文關鍵詞: | Stirling Cryocooler, Hybrid Numerical Method, Three-Dimensional CFD, Thermodynamic Model |
| 相關次數: | 點閱:89 下載:33 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著太空科技快速發展與任務需求日益多元,光學與紅外酬載對成像品質與熱穩定性的要求愈加嚴苛,為確保感測器維持在理想溫度範圍內穩定運作,主動式熱控系統扮演關鍵角色。於是能在有限體積內能夠提供高效率、低振動、可靠度高且可精準控制溫度的微型分置式史特靈致冷器成為熱控技術的重要元件。本研究開發一套混合數值分析法,結合熱力學理論模型與三維計算流體力學模型,建立雙向資料傳遞與模擬控制流程,整合兩者於計算效率與瞬時熱流場解析上的優勢,以提升整體模擬效率與準確性。在填充壓力30 bar與馬達轉速3000 rpm的條件下,僅耗時49小時41分鐘即完成三次交換週期並成功達成收斂標準,完成22,500個熱力循環與15個流體循環,平均每一交換週期約耗時16小時。相較之下,若單純採用三維計算流體力學模型進行求解,至少需耗時12,800小時才可達穩定週期。由此可見,本研究所開發之混合數值分析法可將計算時間大幅縮短逾250倍,不僅保留三維瞬態熱流場資訊,亦大幅提升模擬效率。
With the rapid growth of space technologies and increasingly diverse mission needs, optical and infrared payloads impose stringent requirements on image quality and thermal stability. To keep sensors operating within their allowable temperature ranges, active thermal control is essential. Within this context, a rotary split micro Stirling cryocooler, which offers high efficiency, low vibration, high reliability, and precise temperature regulation in a compact form factor, serves as a key element of spacecraft thermal management.
This study develops a hybrid numerical approach that couples a one dimensional thermodynamic model with a three dimensional computational fluid dynamics model. A bidirectional data exchange and simulation control framework is implemented to combine the rapid convergence of the thermodynamic model with the detailed thermo fluid resolution of the CFD solver, thereby improving overall accuracy and computational efficiency.
Under operating conditions of 30 bar helium charging pressure and a motor speed of 3000 rpm, the hybrid method completed three exchange loops and reached convergence in 49 hours 41 minutes. The run covered 22,500 thermal cycles and 15 fluid cycles, giving about 16 hours per exchange loop. By comparison, a stand alone 3 D CFD simulation is estimated to require more than 12,800 hours to attain a steady periodic solution. These results show that the proposed hybrid approach reduces the computation time by over 250 times while preserving the essential three dimensional thermo fluid details.
[1] L. Zelenyi and O. Zakutnyaya, "The 'Simplest Satellite' that opened up the universe," American Scientist, vol. 105, no. 5, pp. 282-289, 2017.
[2] F. McDonald and J. E. Naugle, "Discovering Earth's radiation belts: remembering Explorer 1 and 3," Eos, Transactions American Geophysical Union, vol. 89, no. 39, pp. 361-363, 2008.
[3] C. Chan, E. Tward, and W. Burt, "Overview of cryocooler technologies for space-based electronics and sensors," in Advances in Cryogenic Engineering: Part A & B: Springer, pp. 1239-1250, 1990.
[4] W. Chen, M. DiPirro, I. McKinley, C. Cho, and H. Tseng, "Active cryocooling needs for NASA space instruments and future technology development," Cryogenics, vol. 141, p. 103877, 2024.
[5] R. Radebaugh, "Historical summary of cryogenic activity prior to 1950," in Cryogenic Engineering: Springer, pp. 3-27, 2007.
[6] M. Z. Getie, F. Lanzetta, S. Bégot, B. T. Admassu, and A. A. Hassen, "Reversed regenerative Stirling cycle machine for refrigeration application: A review," International Journal of Refrigeration, vol. 118, pp. 173-187, 2020.
[7] S. Riabzev, A. Filis, D. Livni, I. Regev, V. Segal, and D. Gover, "Overview of RICOR tactical cryogenic refrigerators for space missions," in Tri-Technology Device Refrigeration (TTDR), vol. 9821: SPIE, pp. 186-201, 2016.
[8] S. Murchie, R. Arvidson, P. Bedini, K. Beisser, J. P. Bibring, J. Bishop, J. Boldt, P. Cavender, T. Choo, and R. Clancy, "Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO)," Journal of Geophysical Research: Planets, vol. 112, no. E5, 2007.
[9] Y. Sato, H. Sugita, K. Mitsuda, T. Nakagawa, R. Fujimoto, M. Murakami, K. Otsuka, S. Tsunematsu, K. Kanao, and K. Narasaki, "Development of mechanical cryocoolers for Astro-H/SXS," Cryogenics, vol. 50, no. 9, pp. 500-506, 2010.
[10] R. Li and L. Grosu, "Parameter effect analysis for a Stirling cryocooler," International Journal of Refrigeration, vol. 80, pp. 92-105, 2017.
[11] Y. Zhao and H. Dang, "CFD simulation of a miniature coaxial Stirling-type pulse tube cryocooler operating at 128 Hz," Cryogenics, vol. 73, pp. 53-59, 2016.
[12] B. Archana and B. Kuzhiveli, "Design, optimization and CFD analysis of a split type free piston Stirling cooler for onboard applications," in 22th International Cryocooler Conference(ICC), Bethlehem, Pennsylvania, USA, 2022.
[13] S. Muhammad and X. Zhang, "Numerical evaluation of heat transfer characteristics and effectiveness of miniature Stirling cryocooler’s regenerator: A multi-part computational study," Cryogenics, vol. 148, p. 104066, 2025.
[14] M. Shad and X. Zhang, "Parametric study of miniature Stirling cryocooler for high temperature infrared detector with design refinement for SWaP configuration," Applied Thermal Engineering, vol. 273, p. 126495, 2025.
[15] M. Singh, M. Sadana, S. Sachdev, and G. Pratap, "Development of miniature Stirling cryocooler technology for infrared focal plane array," Defence Science Journal, vol. 63, no. 6, p. 571, 2013.
[16] S. K. Garg, B. Premachandran, and M. Singh, "Numerical study of the regenerator for a miniature Stirling cryocooler using the local thermal equilibrium (LTE) and the local thermal nonequilibrium (LTNE) models," Thermal Science and Engineering Progress, vol. 11, pp. 150-161, 2019.
[17] C. H. Cheng and D. T. Phung, "Exchanging data between computational fluid dynamic and thermodynamic models for improving numerical analysis of Stirling engines," Energy Science & Engineering, vol. 9, no. 11, pp. 2177-2190, 2021.
[18] 黃振軒, "利用數值與實驗方法發展 100-K 級極低溫史特靈致冷器," 國立成功大學航空太空工程學系博士論文, 2021.
[19] 鄭金祥、黃振軒、黃品捷、陳帛鴻, "太空衛星微型分置式史特靈致冷器研發期末報告," 台南: 國立成功大學航空太空工程系, 2024。
[20] A. Sahu, "CFD simulation of a small stirling cryocooler," Bachelor of Technology thesis, Department of Mechanical Engineering, National Institute of Technology Rourkela, 2010.
[21] P. Bradley, R. Radebaugh, and M. Lewis, "Cryogenic Material Properties Database, Update 2006," in Proceedings of ICMC’06 Twenty First International Cryogenic Engineering Conference and 9th Cryogenics, pp. 13-21, 2006.
[22] K. Nam and S. Jeong, "Novel flow analysis of regenerator under oscillating flow with pulsating pressure," Cryogenics, vol. 45, no. 5, pp. 368-379, 2005.
[23] S. K. Garg, B. Premachandran, M. Singh, S. Sachdev, and M. Sadana, "Effect of Porosity of the regenerator on the performance of a miniature Stirling cryocooler," Thermal Science and Engineering Progress, vol. 15, p. 100442, 2020.
[24] C. H. Cheng and J. S. Huang, "Development of a 100-K pneumatically driven split-type cryogenic Stirling cryocooler based on experimental and numerical study," Cryogenics, vol. 105, p. 102998, 2020.
[25] H. Kuehl, "Numerically efficient modelling of non-ideal gases and their transport properties in Stirling cycle simulation," in Proceedings of the 17th International Stirling Engine Conference and Exhibition (ISEC), UK, pp. 24-26, 2016.
[26] E. Marquardt, J. Le, and R. Radebaugh, "Cryogenic material properties database," Cryocoolers 11, pp. 681-687, 2002.
[27] ANSYS, Inc., Ansys Fluent user's guide. Canonsburg, PA, USA: ANSYS, 2023.
[28] ANSYS, Inc., Ansys meshing user's guide. Canonsburg, PA, USA: ANSYS, 2023.
[29] ANSYS, Inc., Ansys Fluent theory guide. Canonsburg, PA, USA: ANSYS, 2023.
[30] A. Boroujerdi and M. Esmaeili, "Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators," Alexandria Engineering Journal, vol. 54, no. 4, pp. 787-794, 2015.
[31] B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," in Numerical prediction of flow, heat transfer, turbulence and combustion: Elsevier, pp. 96-116, 1983.
[32] T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, "A new k-ϵ eddy viscosity model for high reynolds number turbulent flows," Computers & fluids, vol. 24, no. 3, pp. 227-238, 1995.
[33] ANSYS, Inc., Ansys Fluent customization manual. Canonsburg, PA, USA: ANSYS, 2023.
[34] P. C. Huang, J. S. Huang, C. H. Cheng, B. H. Chen, P. Y. Chen, C. H. Wang, and M. H. Chen, "Numerical simulation of miniature rotary-Split Stirling cryocooler applied in satellites," in Proceedings of the Southeast Asia Workshop on Aerospace Engineering 2024 (SAWAE), Kuala Lumpur, Malaysia, 2024.