| 研究生: |
蕭予欣 Hsiao, Yu-Hsin |
|---|---|
| 論文名稱: |
考慮近斷層脈衝效應之隔震設計法及其機率式性能評估 Seismic isolation design and its probabilistic performance assessment considering near-fault pulse effect |
| 指導教授: |
盧煉元
Lu, Lyan-Ywan |
| 共同指導教授: |
蕭輔沛
Hsiao, Fu-Pei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 273 |
| 中文關鍵詞: | 隔震設計 、性能設計法 、近斷層震波 、隔震性能評估 、脈衝效應 、隔震系統補強 、增量動力分析 、非線性動力分析 |
| 外文關鍵詞: | Isolated design, near-fault earthquake, performance design method, seismic performance assessment, pulse effect, reinforced isolation system, incremental dynamic analysis, nonlinear time history analysis |
| 相關次數: | 點閱:114 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣地震發生機率十分頻繁,島內活動斷層密佈,建物易受到近斷層強震震波之襲擊,使建物發生嚴重損壞或倒塌,如今先進的隔震技術雖已逐漸被工程界採用作為防震之工法,以提升建物之耐震性能,但由於傳統隔震設計方法,採用長週期段以1/T(週期的倒數)遞減之設計反應譜,無法考量近斷層脈衝效應之影響,因此本文提出一個以性能為導向並且能夠考量近斷層脈衝效應之隔震設計方法,稱為改良式二階性能設計法。該法首先利用美國NIST所建議之指向效應窄頻模型決定一脈衝效應放大因子,用以調整規範之設計反應譜,再根據此反應譜,以決定整體隔震系統之有效週期及有效阻尼以滿足預設的耐震性能需求(包含:結構基底剪力及隔震位移容量),最後,再決定支承及增補阻尼器之數量及個別的參數。
為便於說明,本文將所建議的設計方法應用於一棟位於近斷層區耐震能力不足之建物,期能以隔震技術提升其耐震能力。同時,基於經濟與施工方便性等因素,在滿足相同耐震性能需求的條件下,本文以所建議的方法,設計出以下三種不同之隔震系統:(案例1)僅安裝FPS滑動支承、(案例2)FPS支承+黏滯性阻尼器、(案例3)FPS支承+摩擦阻尼器。同時,為能量化此三種隔震設計案例之實際耐震能力,本文乃以前人所提出之機率式耐震性能評估方法針對此三種隔震案例進行耐震評估。評估結果顯示原建物為耐震不合格之建物,三種隔震方案皆可使原建物之耐震性能達到合格標準。其中案例1(僅有FPS)之隔震系統,對上部結構的耐震防護最佳亦最省工,但隔震層於MCE地震力下的損傷機率最高;而案例2(FPS支承+黏滯阻尼器)則是對於支承位移的抑制效果最佳,隔震層於MCE地震力下的損傷機率最高。
再者,現今有許多位於近斷層區的既有隔震建物,由於設計時並未考慮近斷層之脈衝效應,因而面臨隔震位移容量或耐震力不足的問題,皆需經過隔震補強以有效抑制隔震層位移及提升隔震建物之耐震力。職事之故,本文亦提出可用以補強近斷層地區隔震建物之增補阻尼補強設計法。研究結果顯示,經過前述補強設計法所設計之隔震建物經補強後,可有效抑制隔震層位移,降低隔震極限損傷機率,但對於上部結構的損傷機率則為提高。
A traditional isolation design method usually uses a design response spectrum that does not consider the pulse effect in near-fault ground motions. For the purpose of near-fault isolation design, this paper proposes a performance-based method called the modified two-stage performance isolation design, which is able to account for the long-period pulse-effect of near-fault earthquakes. According to the proposed method, three different isolation cases were designed in this study. The assessment result shows that the design case in which only FPS sliding bearings are used provides the best seismic protection for the superstructure and is more convenient for construction, while the design case in which both FPS bearings and viscous dampers are used provides the best protection on the isolation system and has the least damage risk of the isolation layer. Moreover, this paper also proposes a retrofit design method using supplementary damping for retrofitting the existing isolated structures in near-fault areas. The assessment result shows that the probability of isolation failure due to excessive isolator displacement can be very effectively reduced after the retrofitting, although the damage probability of the superstructure will increase.
1. ASCE 41-06 (2007) “Seismic Rehabilitation of Existing Building.” American Society of Civil Engineers
2. ASCE 41-13 (2014) “Seismic Rehabilitation of Existing Building.” American Society of Civil Engineers.
3. ASCE 7-10 (2013) “Minimum Design Loads for Buildings and Other Structures.” American Society of Civil Engineers.
4. ASCE 7-16 (2016) “Minimum Design Loads for Buildings and Other Structures.” American Society of Civil Engineers.
5. ANSI/ANS (2008). “Probabilistic Seismic Hazard Analysis.”Report number ANSI/ANS-2.29-2008, American Nuclear Society and American National Standards Institute.
6. Baker J. W. (2007) “Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis.” Bulletin of the Seismological Society of America, 97 (5), 1486-1501.
7. Baker, J. W. (2011) “ Condition Mean Spectrum:Tool for ground motion selection.” Journal for Structural Engineering, 137 , 322-331.
8. Baker, J. W. (2015) “Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis.” Earthquake Spectra, Vol. 31, No. 1, pp. 579-599.
9. Castaldo, P., Palazzo, B., Della Vecchia, P. (2015a) “Seismic reliability of base-isolated structures with friction pendulum bearings. ” Engineering Structure. 95, 80–93.
10. Castaldo, P., Tubaldi, E. (2015b) “Influence of FPS bearing properties on the seismic performance of base‐ isolated structures.” Earthquake Engineer and Structural Dynamics, 44, 2817-2836.
11. Castaldo, P., Palazzo, B., Ferrentino, T., (2016) “Seismic reliability‐based ductility demand evaluation for inelastic base‐isolated structures with friction pendulum devices.”, Earthquake Engineer and Structural Dynamics, 46, 1245-1266.
12. Castaldo P. Amendola G. Palazzo B (2017a) “Seismic fragility and reliability of structures isolated by friction pendulum devices:seismic reliability-based design (SRBD).”, Earthquake Engineer and Structural Dynamics, 46, 425-446.
13. Castaldo, P., Palazzo, B., Ferrentino, T., Petrone, G., (2017b) “Influence of the strength reduction factor on the seismic reliability of structures with FPS considering intermediate PGA/PGV ratios.” Composite Part B. 115, 308–315.
14. Computers & Structures, Inc. (2016) “ETABS 2016 CSi Analysis Reference Manual.”
15. Donatello Cardone,Giuseppe Perrone,Valentino Piesco.(2018)” Developing collapse fragility curves for Base-isolated buildings.”
16. FEMA 356 (2000), “Prestandard and Commentary for the Seismic Rehabilitation of Buildings.” Federal Emergency Management Agency.
17. FEMA P-58 (2012) “Seismic Performance Assessment of Buildings.” Federal Emergency Management Agency.
18. FEMA P-58/BD-3.7.8 (2008) “Casualty Consequence Function and Building Population Model Development.” Federal Emergency Management Agency.
19. FEMA P-695 (2009) “Quantification of Building Seismic Performance Factors.” Federal Emergency Management Agency.
20. FEMA P-750 (2009) “NEHRP Recommended Seismic Provision.” Federal Emergency Management Agency.
21. Harmsen, S.C.,(2001)“Mean and modal in the deaggregation of probabilistic ground motion.” Bulletin of the Seismologic Society of America, Vol. 91, No. 6, pp.1537-1552.
22. Huang Y. N., Whittaker A. S. (2009) “Maximum Spectral Demands in the Near-Fault Region.” Eathquake Spectra, Vol.24, pp319-341.
23. Jean, Wen-Yu, Yu-Wen Chang, Kuo-Liang Wen, Chin-Hsiung Loh (2006), Early Estimation of Seismic Hazard for Strong Earthquakes in Taiwan, Natural Hazards, 37(1–2):39-53.
24. Kawashima, K., and Aizawa, K. (2009). “ Modification of Earthquake Response Spectra with Respect to Damping Ratio”. Proceedings of the third U.S. National Conference on Earthquake Engineering, South Carolina, 1107-1116.
25. Lai, J. W., Wang, S. S., Matthew, J. S., Mahin, S. A. (2015) “Seismic Evaluation and Retrofit of Existing Tall Buildings in California: Case Study of a 35-Story Steel Moment-Resisting Frame Building in San Francisco”, PEER Report No. 2015/14.
26. Medina, R.A. and Krawinkler, H. (2002). “Seismic demands for nondeteriorating frame structures and their dependence on ground motions.” Report No. 144, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
27. NIST (2011) “Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses.” GCR 11-917-15.
28. NCREE (2019) Reevaluation of Probabilistic Seismic Hazard of Nuclear Facilities in Taiwan Using SSHAC Level 3 Methodology,http://sshac.ncree.org.tw/index.htm .
29. SEAOC Vision 2000 (1995) “A Framework for Performance-based Design.” California Office of Emergency Services.
30. Somerville, P.G., N.F. Smith, R.W. Graves, and N.A. Abrahamson (1997). “Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity.” Seismol. Res.Let. 68(1), 199-222.
31. Somerville, P.G. (2003). “Magnitude scaling of the near fault rupture directivity pulse.” Phys. Earth Planet. Inter.137(1), 201-212.
32. Shahi, S. K., and Baker, J. W. (2011a) “An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis.” Bulletin of the Seismological Society of America, Vol.101, No. 2, pp. 742–755.
33. Shahi, S. K., and Baker, J. W. (2011b). “Regression models for predicting the probability of near-fault earthquake ground motion pulses, and their period .” in 11th International Conference on Applications of Statistics and Probability in Civil Engineering, Zurich, Switzerland, 1–4 August.
34. Shahi, S. K., and Baker, J. W. (2013) “A Probability Framework to Include the Effects of Near-fault Directivity in Seismic Hazard Assessment.” Report No. 180, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
35. Shahi, S. K., and Baker, J. W. (2014) “An Efficient Algorithm to Identify Strong-Velocity Pulses in Multicomponent Ground Motions.” Bulletin of the Seismological Society of America, Vol.104, No. 5, pp. 2456–2466.
36. Sokolov, V., Jean, W.-Y. and Wenzel, F. (2019). Multiple-Site (Areal) Characteristics Of Seismic Hazard For Design And Risk Mitigation Purposes: An Example Of Implementation For Taiwan, International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake, Taipei, Taiwan, September 15-19, 2019.
37. Shyu, J. B. H., Y. R. Chuang, Y. L. Chen, Y. R. Lee, and C. T. Cheng (2016). A new on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan, Terrestrial, Atmospheric and Oceanic Science 72, No. 5, 311–323.
38. Takeda, T., Sozen, M. A., Nielsen, N. N. (1970) “Reinforced Concrete Response to Simulated Earthquakes.” Journal of the Structural Division, Vol. 96, Issue 12, pp. 2557-2573.
39. Vamvatsikos, D. and Cornell, C. A. (2002) “Incremental dynamic analysis.” Earthquake Engineering and Structural Dynamics, Vol.31, Issue.3, pp. 491-514.
40. Wu, C. L., Lin, S. H., Soheil Y., Weng P. W., Hwang, S. J., Elwood, K. J. and Moehle, J. P. (2009) “Design of Dynamic Collapse Testing System for 2-Story Reinforced Concrete Frames” 3rd International Conference on Advances in Experimental Structural Engineering, San Francisco, USA.
41. Yang, T. Y., Moehle, J., Stojadinovic, B., and Der Kiureghian, A. (2009) “Performance evaluation of structural systems: theory and implementation.” Journal of Structural Engineering, Vol. 135, No. 10, pp. 1146-1154.
42. 張婉妮 (2001) “近斷層震波對滑動式隔震結構之影響”,高雄第一科技大學營建工程學系碩士論文,7月,指導教授:盧煉元。
43. 盧煉元,施明祥,張婉妮 (2003)“近斷層震波對滑動式隔震結構之影響評估”,結構工程,第18卷,第4期,23-48頁。
44. 曾旭玟 (2004) “高分子材料於結構隔震技術之應用”,高雄第一科技大學營建工程學系碩士論文,7月,指導教授:盧煉元。
45. 林欣儀 (2004) “台灣地震震源尺度分析2003 年規模6.0 地震分析”,國立中央大學碩士論文,6月,指導教授:馬國鳳。
46. 吳俊霖,郭武威,黃世建,楊元森,羅俊雄 (2009)“在地震力作用下非韌性鋼筋混凝土構架倒塌行為研究”,國家地震工程研究中心,NCREE-09-025。
47. 鄧崇任,柴駿甫,廖文義,翁元滔,簡文郁,邱世彬,林凡茹,周德光 (2010) “耐震性能設計規範改進先期研究”,國家地震工程研究中心,NCREE-10-013。
48. 林士涵,Soheil Yavari,吳俊霖,黃世建,Kenneth J. Elwood,楊元森,翁樸文,Beyhan Bayhan,Jack P. Moehle (2010)“非韌性配筋鋼筋混凝土構架振動台實驗研究”,國家地震工程研究中心,NCREE-10-002。
49. 鄭世楠、王子賓、林祖慰、江嘉豪 (2010)“台灣地區地震目錄的建置”,中央氣象局地震技術報告彙編,第 54 卷,575-605。
50. 黃尹男 (2011)“美國新一代房屋結構耐震性能評估法(一)”,結構工程,第26卷,第4期,59-74頁。
51. 中華民國內政部營建署 (2011)“建築物耐震設計規範及解說”。
52. 蕭輔沛,鍾立來,葉勇凱,簡文郁,沈文成,邱聰智,周德光,趙宜峰,翁樸文,楊耀昇,褚有倫,涂耀賢,柴駿甫,黃世建 (2013)“校舍結構耐震評估與補強技術手冊第三版”,國家地震工程研究中心,NCREE-13-023。
53. 簡文郁,張毓文,邱世彬,劉勳仁 (2014)“近斷層設計地震研究”,國家地震工程研究中心,NCREE-14-005。
54. 蔡諄昶 (2015)“具摩擦可變特性之滑動隔震系統於垂直震波作用下之實驗與分析”,高雄第一科技大學營建工程學系碩士論文,7月,指導教授:盧煉元。
55. 盧煉元,王亮偉,陳慶輝,李官峰,李姿瑩,蔡諄昶 (2016)“以性能為導向之二階段隔震設計法”,結構工程,第31卷,第3期,33-61頁。
56. 王亮偉 (2016)“變曲率滑動隔震系統於三維震波作用下之實驗與理論研究”,國立成功大學土木工程學系碩士論文,7月,指導教授:盧煉元。
57. 盧煉元 (2016)“結構隔減震技術講義”,國立成功大學土木工程研究所。
58. 簡文郁 (2017) 國家地震工程研究中心強地動組提供資料:台灣地區正規化之地震危害度曲線。
59. 謝瑋桓 (2017)“中高樓建築機率式耐震與倒塌風險評估之研究”,國立成功大學土木工程學系碩士論文,7月,指導教授:盧煉元。
60. 吳信賢 (2017)“重要設施非結構構件之耐震性能與風險評估”,國立成功大學土木工程學系碩士論文,7月,指導教授:盧煉元。
61. 謝瑋桓,盧煉元,蕭輔沛,湯宇仕,黃尹男 (2018)“中高樓結構機率式倒塌風險評估法之應用研究”,結構工程,第33卷,第2期。
62. 湯宇仕 (2018) “考量近斷層震波作用下之隔震建物機率式耐震評估法”,國立成功大學土木工程學系碩士論文,7月,指導教授:盧煉元。
63. 林禹辰 (2018) “摩擦單擺隔震結構受近斷層地震作用之振動台試驗與分析”,國立臺灣大學土木工程學系碩士論文,7月,指導教授:黃尹男。
64. 葉勇凱,周德光 (2018) “土木404-100設計力之耐震評估與易損曲線”,國家地震工程研究中心,NCREE-18-016。
65. 余立偉 (2019) “1/2縮尺非韌性鋼筋混凝土建築受近斷層地震之振動台實驗與分析”,國立成功大學土木工程學系碩士論文,7月,指導教授:劉光晏。
66. 美國柏克萊加州大學太平洋地震工程研究中心 (https://peer.berkeley.edu/research/nga-west-2)
67. 簡文郁 (2018a) 國家地震工程研究中心強地動組,提供資料:台灣地區正規化之地震危害度曲線,未發表。
68. 簡文郁 (2018b) 國家地震工程研究中心強地動組,提供資料:台中霧峰地區考量近斷層效應之地震危害度曲線,未發表。