| 研究生: |
陳怡雁 Chen, Yi-Yen |
|---|---|
| 論文名稱: |
味噌菌相之多源基因體學研究 Metagenomics of Bacteria and Fungi in the Miso |
| 指導教授: |
蔣鎮宇
Chiang, Tzen-Yuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 麴菌 、細菌相 、真菌相 、多源基因體學 |
| 外文關鍵詞: | microbiome, Koji, probiotics, metagenomics |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
味噌是黃豆發酵製品。黃豆有豐富植物性蛋白質,其經自然發酵伴隨產生的次代謝物使味噌具獨特風味。味噌含不少種類乳酸菌、酵母菌及米麴菌類微生物,這些微生物發酵作用產生的多種酵素能幫助人體消化食物與吸收。味噌的健康美味以及方便性,已成為東亞人民生活中重要的食材。味噌依麴菌發酵時間與原料比例不同發展出多樣化類型的味噌;有米味噌、豆味噌、麥味噌及特殊味噌等,其風味、顏色、口感與香氣也不盡相同。為了深入了解台灣及日本幾種代表性味噌,本研究藉由多源基因體學結合DNA條碼的分析,探討台灣、日本不同地區、不同種類味噌的細菌相及真菌相,以了解菌種的分佈對味噌發酵過程的影響。本研究依Illumina 技術進行大規模定序,選取十二種味噌(含淡黃味噌、甜白味噌、紅味噌)進行16S rRNA以及ITS片段定序以解析各實驗組間菌相,結果顯示,十二個味噌樣本中,以日本青森KANESA甜白味噌含細菌物種豐度最高,名古屋豆味噌細菌物種豐度最低。以主成分分析台灣味噌與日本味噌,兩產地味噌的細菌相不具明顯差異。另外,針對淡黃味噌、甜白味噌及紅味噌探討,此三種類味噌之間的細菌相也不具明顯差異。台灣產味噌菌相的組成較日本產味噌單純,主要菌相組成以葡萄球菌科 (Staphylococcaceae)、明串珠菌科 (Leuconostocaceae)及乳酸桿菌科 (Lactobacillaceae)為主。而日本味噌除了含有上述菌科外,還富含鞘脂單胞菌科 (Sphingomonadaceae)、叢毛單胞菌科 (Comamonadaceae)、腸內球菌 (Enterococcaceae)以及鏈球菌科(Streptococcaceae)等細菌。台灣味噌明串珠菌科細菌占的比例較日本味噌多出許多,此現象和台灣悶熱潮溼氣候有關。藉由細菌類群差異分布分析,可初步看出味噌樣本有因產地接近而細菌相組成較相似的趨向。但其中一個意外的發現是,台灣十全味噌與鹿兒島麥味噌細菌相組成非常相似,此兩種味噌產地間距離遠,也屬於不同類型的味噌,推論製造過程中有人為製麴交流之可能性。此外,各味噌樣本中之真菌組成單純,平均95%以上序列對應至米麴菌(Aspergillus oryzae),為味噌發酵最主要作用之真菌。此外,有非常少比例的假絲酵母菌屬(Candida)及黃麴黴菌(Aspergillus flavus)存在,其中黃麴黴菌所產生的黃麴毒素可能會污染味噌,因此,味噌在使用中的保存環境是需要非常留意的。
Miso is a fermented soybean paste widely used in Eastern Asia. The benefits of miso are associated with its tremendous nutrient profile, including iron, calcium, B vitamins, isoflavones, and essential amino acids. Noticeably, there are probiotics in miso. Koji (cereal grains with the mold Aspergillus oryzae) is as a major source of the microorganisms involved in miso fermentation. Many secondary metabolites are released from fermentation process and make miso flavorful. However, the diversity of microbiome in miso has not been comprehensively investigated, especially for different types of miso. In this study, twelve samples covered three types of miso, white, light yellow, and red miso, were chosen for microbiome examination. The composition of microbiome in miso was determined by Illumina sequencing with bacterial 16S and fungal ITS amplicons. Here, Staphylococcaceae, Leuconostocaceae and Lactobacillaceae were detected with high relative abundance in all Taiwanese miso. On the other hand, in Japanese Miso, besides the 3 predominant bacterial families, a more diverse composition was detected, including Sphingomonadaceae, Comamonadaceae, Enterococcaceae and Streptococcaceae. We found that Leuconostocaceae was significantly more abundant in Taiwanese miso than in Japanese miso, possibly resulting from the humid climate of Taiwan. Surprisingly, one Taiwanese miso shared large proportion of the microbiome with a Japanese miso, implying that a possible flow of koji from Japan to Taiwan. Furthermore, in the fungal composition, except for the predominant fermentation agent A. oryzae, some bad fungi such as Candida and A. flavus were detected. Therefore, the storage conditions of miso should be carefully noticed.
Auer, C. 2008. Ecological risk assessment and regulation for genetically-modified ornamental plants. Critical Reviews in Plant Sciences 27: 255-271.
Balasundaram, S. V., I. B. Engh, I. Skrede, and H. Kauserud. 2015. How many DNA markers are needed to reveal cryptic fungal species? Fungal Biology 119: 940-945.
Bartram, A. K., M. D. J. Lynch, J. C. Stearns, G. Moreno-Hagelsieb, and J. D. Neufeld. 2011. Generation of Multimillion-Sequence 16S rRNA Gene Libraries from Complex Microbial Communities by Assembling Paired-End Illumina Reads. Applied and Environmental Microbiology 77: 3846-3852.
Bentley, R. 2006. From miso, sake and shoyu to cosmetics: a century of science for kojic acid. Natural Product Reports 23: 1046-1062.
Blaxter, M. et al. 2005. Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society Biological Sciences 360: 1935-1943.
Caporaso, J. G. et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335-336.
Chin, K. D. H., and P. E. Koehler. 1986. Effect of salt concentration and incubation-temperature on formation of histamine, phenethylamine, tryptamine and tyramine during miso fermentation. Journal of Food Protection 49: 423-427.
Chiu, H. C., R. Levy, and E. Borenstein. 2014. Emergent Biosynthetic Capacity in Simple Microbial Communities. Plos Computational Biology 10.
Denning, D. W. 1998. Invasive aspergillosis. Clinical Infectious Diseases 26: 781-803.
Denter, J., and B. Bisping. 1994. Formation of B-vitamins by bacteria during the soaking process of soybeans for tempe fermentation. International Journal of Food Microbiology 22: 23-31.
Du, D. D., M. Yoshinaga, M. Sonoda, K. Kawakubo, and Y. Uehara. 2014. Blood pressure reduction by Japanese traditional Miso is associated with increased diuresis and natriuresis through dopamine system in Dahl salt-sensitive rats. Clinical and Experimental Hypertension 36: 359-366.
Ennahar, S., T. Sashihara, K. Sonomoto, and A. Ishizaki. 2000. Class IIa bacteriocins: biosynthesis, structure and activity. Fems Microbiology Reviews 24: 85-106.
Ercolini, D. 2013. High-Throughput Sequencing and Metagenomics: Moving Forward in the Culture-Independent Analysis of Food Microbial Ecology. Applied and Environmental Microbiology 79: 3148-3155.
Fernandez, M., and M. Zuniga. 2006. Amino acid catabolic pathways of lactic acid bacteria. Critical Reviews in Microbiology 32: 155-183.
Friedman, M., and D. L. Brandon. 2001. Nutritional and health benefits of soy proteins. Journal of Agricultural and Food Chemistry 49: 1069-1086.
Handelsman, J. 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews 68: 669-677
Harada, R. et al. 2017. Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation. Journal of Bioscience and Bioengineering 123: 203-208.
Hirota, A., S. Taki, S. Kawaii, M. Yano, and N. Abe. 2000. 1,1-diphenyl-2-picrylhydrazyl radical-scavenging compounds from soybean miso and antiproliferative activity of isoflavones from soybean miso toward the cancer cell lines. Bioscience Biotechnology and Biochemistry 64: 1038-1040.
Howe, E. E., G. R. Jansen, and M. L. Anson. 1967. An Approach Toward the Solution of the World Food Problem with Special Emphasis on Protein Supply. The American Journal of Clinical Nutrition 20: 1134-1147.
Huang, C. L. 2015. Host specificity of Lepidoptera larvae affects gut microbiota, Cheng Kung University, Taiwan, Tanan.
Kaneko, K., T. Inayama, and G. Koike. 1985. Utilization of soy protein isolate mixed with rice protein in Japanese women. Journal of Nutritional Science and Vitaminology 31: 99-106.
Kim, T., J. H. Lee, M. H. Park, and H. Y. Kim. 2010. Analysis of Bacterial and Fungal Communities in Japanese- and Chinese-Fermented Soybean Pastes Using Nested PCR-DGGE. Current Microbiology 60: 315-320.
Kobayashi, T. et al. 2007. Genomics of Aspergillus oryzae. Bioscience Biotechnology and Biochemistry 71: 646-670.
Koberl, M., H. Muller, E. M. Ramadan, and G. Berg. 2011. Desert Farming Benefits from Microbial Potential in Arid Soils and Promotes Diversity and Plant Health. Plos One 6.
Kum, S. J. et al. 2015. Effects of Aspergillus Species Inoculation and Their Enzymatic Activities on the Formation of Volatile Components in Fermented Soybean Paste (doenjang). Journal of Agricultural and Food Chemistry 63: 1401-1418.
LaJeunesse, T. C. 2001. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the its region: In search of a "species" level marker. Journal of Phycology 37: 866-880.
Lina, G. et al. 1999. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clinical Infectious Diseases 29: 1128-1132.
Machida, M., O. Yamada, and K. Gomi. 2008. Genomics of Aspergillus oryzae: Learning from the History of Koji Mold and Exploration of Its Future. DNA Research 15: 173-183.
Mozaffarian, D., M. B. Katan, A. Ascherio, M. J. Stampfer, and W. C. Willett. 2006. Medical progress - Trans fatty acids and cardiovascular disease. New England Journal of Medicine 354: 1601-1613.
Murooka, Y., and M. Yamshita. 2008. Traditional healthful fermented products of Japan. Journal of Industrial Microbiology & Biotechnology 35: 791-798.
Onda, T. et al. 2002. Widespread distribution of the bacteriocin-producing lactic acid cocci in Miso-paste products. Journal of Applied Microbiology 92: 695-705.
Pfaller, M. A., and D. J. Diekema. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clinical Microbiology Reviews 20: 133-140
Quail, M. A. et al. 2008. A large genome center's improvements to the Illumina sequencing system. Nature Methods 5: 1005-1010.
Sanvido, O. et al. 2012. Evaluating environmental risks of genetically modified crops: ecological harm criteria for regulatory decision-making. Environmental Science & Policy 15: 82-91.
Sawada, K. et al. 2015. Glucosylceramide Contained in Koji Mold-Cultured Cereal Confers Membrane and Flavor Modification and Stress Tolerance to Saccharomyces cerevisiae during Coculture Fermentation. Applied and Environmental Microbiology 81: 3688-3698.
Schloss, P. D., and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology 71: 1501-1506.
Schuster, S. C. 2008. Next-generation sequencing transforms today's biology. Nature Methods 5: 16-18.
Seralini, G. E., D. Cellier, and J. S. de Vendomois. 2007. New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Archives of Environmental Contamination and Toxicology 52: 596-602.
Sharma, P. et al. 2008. From bacterial genomics to metagenomics: concept, tools and recent advances. Indian Journal of Microbiology 48: 173-194.
Shimbo, S. et al. 1996. Shift in sodium chloride sources in past 10 years of salt reduction campaign in Japan. Tohoku Journal of Experimental Medicine 180: 249-259.
Shukla, S., H. K. Park, J. K. Kim, and M. Kim. 2011. Determination of biogenic amines in Japanese miso products. Food Science and Biotechnology 20: 851-854.
Shurtleff, W., and A. Aoyagi. 2011. The Book of Miso, Taiwan.
Silva, S. et al. 2012. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. Fems Microbiology Reviews 36: 288-305.
Standal, B. R. 1963. Nutritional value of proteins of oriental soybean foods. Journal of Nutrition 81: 279.
Stiles, M. E., and W. H. Holzapfel. 1997. Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology 36: 1-29.
Tanaka, Y., J. Watanabe, and Y. Mogi. 2012. Monitoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis. Food Microbiology 31: 100-106.
Tessari, P., A. Lante, and G. Mosca. 2016. Essential amino acids: master regulators of nutrition and environmental footprint? Scientific Reports 6.
Tripathi, A. K., and A. K. Misra. 2005. Soybean - a consummate functional food: A review. Journal of Food Science and Technology-Mysore 42: 111-119.
Wang, H. J., and P. A. Murphy. 1994. Isoflavone composition of American and Japanese soybeans in IOWA - effects of variety, crop year, and location. Journal of Agricultural and Food Chemistry 42: 1674-1677.
Wu, G. et al. 2014. Production and supply of high-quality food protein for human consumption: sustainability, challenges, and innovations. Annals of the New York Academy of Sciences 1321: 1-19.
大西邦男. 1983. 味增的熟成與脂質變化. 日本釀協, 日本.
陳慶元, 黃崇真, 邱雪惠, 廖啟成. 2007. 乳酸菌之保健功效與產品開發. 農業生技產業季刊 11: 60-68.
校內:立即公開