簡易檢索 / 詳目顯示

研究生: 杜榮國
Tu, Jung-Kuo
論文名稱: MEMS熱膜感測器設計製造及應用於探討非定常流動分離現象
Design and Manufacturing of MEMS Thermal Film Sensors and Its Application for Detection of Unsteadiness of Flow Separation
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 79
中文關鍵詞: 非定常分離微機電
外文關鍵詞: Unsteadiness of Flow Separation, MEMS
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展一項新的微製造技術用來開發可撓式熱膜感測器陣列器,可撓式元件利用聚醯亞銨(Polyimide)做結構層、內部包含鉑(Platinum)電阻感溫元件陣列以及金(Gold)金屬連結導線。設計中簡化以往複雜的製程,僅利用兩層光罩即完成可撓式熱膜感測器。自製熱膜感測器電阻溫度係數(Temperature Coefficient of Resistance , TCR)可以達到0.247% /℃,模擬液滴實驗,熱膜感測器對物理訊號之響應頻率可以達到1.1 kHz。實驗中可撓式熱模感測器陣列可以貼附在具有高彎曲度的表面,以進行風洞量測。我們嘗試將熱膜感測器貼覆於T型鈍形體,熱膜感測器可以感測到Re=5400-28800之渦流溢放頻率約為9至55Hz,將溢放頻率無因次化所得之無因次頻率St(Strouhal Number),所得之St=0.089,與文獻相符合。此外實驗中吾人將熱膜感測器貼覆於二維圓柱體表面,成功量測到平均分離點約落在80-82˚左右。另一方面思考如何以定量的方法呈現圓柱分離的非定常特徵,本研究除利用快速傅立葉轉換(FFT)對熱膜感測器所量測之訊號分析外,亦嘗試利用小波分析法(Wavelet analysis)針對渦流溢放瞬時頻率及低頻擾動效應等特性進行探討及相關性分析,所得結果有助於進一步瞭解二維圓柱體非定常分離特性。

    A flexible skin, on which an array of miniature thermal film sensors was situated, was successfully made with a MEMS fabrication process. The design was featured with using platinum as sensing material, deposited on polyimide layer as flexible substrates. In the process, only two masks were used for defining the patterns of the thermal sensors and conducting wires, respectively. The polyimide layers were deposited on top of a thin aluminum layer, which served as a sacrificial layer, hence the flexible skin could be released after metal etching and peeled off easily. The flexible skin together with thermal sensors is survived under large deformation, hence ideal for bonding to a highly curved surface. Each of the sensors shows the linear temperature-dependence characteristic, with the coefficient of resistance (TCR) of 0.247% /℃ was measured. By imposing a stepwise change of surrounding temperature to a sensor, the constant-current circuitry output showed a dynamic response up to 1.1 kHz. The thermal sensor was employed to measure the vortex shedding frequency behind a T-shaped cylinder, at Reynolds numbers 5.4×103–2.8×104. The spectral results reduced from the measured signals confirm that the measurement system was able to resolve the shedding frequency up to 55 Hz. Subsequently, experiments were made to detect the separation point on a circular cylinder normal to the incoming flow. The time-mean separation point on the circular cylinder surface reduced from the signals measured show a very good agreement with the results reported in the literature. Further, an array of thermal film sensors consisting of three sensors were employed to investigate the relation between low-frequency modulations and instantaneous vortex shedding frequency. The analysis was carried out using the wavelet analysis and a correlation technique. The results obtained successfully reveal the instantaneous characteristic behavior of unsteadiness of flow separation on the cylinder model.

    目錄 頁次 中文摘要…………………………………………………….…………………Ⅰ 英文摘要…………………………………………………….…………………Ⅱ 誌謝…………………………………………………………….………………Ⅳ 目錄……………………………………………………….……………….……Ⅴ 表目錄………………………………………………………………………..…Ⅶ圖目錄………………………………………………….…………………….…Ⅷ 符號說明………...………………………………………………….…………XII 第一章 導論……………………………………………...……………………...1 1.1可撓式感測器文獻回顧………………………….…….….…………...2 1.2二維圓柱表面流場文獻回顧……………………………...…………...2 第二章 可撓式溫度感測器設計原理與製作……………...……...……………6 2.1 鉑熱電阻感測原理……………………….……………….….………..6 2.1.1 可撓式溫度設計電阻值估算………………………..………...7 2.2 可撓式溫度感測器製程………………………………...….………….8 2.3 主要製程技術簡介……………………………………...……………..9 2.3.1 晶圓表面之清潔…………………………………..…………...9 2.3.2聚醯亞胺(Polyimide)……...…………………..………..….11 2.3.3微影(Photolithography) …………………………..………..….12 2.3.4 薄膜應力……………………………………...…...………….14 第三章 可撓式熱膜感測器測試……………………………………..………...17 3.1可撓式溫度感測器靈敏度及物理響應頻率測試 …………..………17 3.2可撓式溫度感測器高物理響應頻率設計…………………...……….20 3.3 二維圓柱體分離點量測……………………………………...………21 3.3.1 可撓式溫度感測器之風洞測試………………..……………22 3.3.2 二維圓柱體平均分離點量測結果與討論……..……....……22 3.4 T型鈍形體渦流溢放實驗………….………………….……...………23 第四章 二維圓柱體表面非定常分離特性量測……………….……...………26 4.1 圓柱渦流溢放量測……………....…………….………..…………26 4.2 小波理論(Wavelet)……………...………….……….….………….28 4.3 熱膜感測器訊號小波轉換………………….…………..…………30 4.4 圓柱非定常分離特性量測……………….……………..…………32 第五章 結論……………………………………………………………...…….37 參考文獻…………………………………….………………………………….41 表目錄 表4.1 雷諾數37400,不同位置同時風洞吹試低頻擾動相關性。…………48 表4.2 雷諾數37400,不同位置同時風洞吹試瞬時頻率相關性。…………48 表4.3 雷諾數37400,不同位置同時風洞吹試瞬時頻率相關性(計算不考慮”失頻”區段)。…………………………………………………………….….…49 圖目錄 圖1.1 固定壁面之分離現象。………………………….…………………50 圖1.2 移動壁面之分離現象。………………………………………….…50 圖2.1 可撓式溫度感測器陣列完成圖。……………………………….…51 圖2.2 串聯式可撓溫度感測器SEM正面圖。…………………………...51 圖2.3 感測器片電阻值的計算。……………………………………….…51 圖2.4 可撓式溫度感測器元件設計剖面圖。………………………….…52 圖2.5 感測器光學顯微鏡照片。……………………………………….…52 圖2.6 可撓式溫度感測器製程步驟流程圖。………….…………….…...53 圖2.7 可撓式溫度感測器成品圖。…………………………………….…54 圖2.8 可撓式溫度感測器完成後貼附於曲面模型上。……………….…54 圖2.9 去有機溶液清潔晶圓表面。…………………………………….…54 圖2.10 晶圓表面較小微粒子與晶圓表面之凡得瓦爾力。……………...55 圖2.11 聚醯亞胺聚縮合反應。…………………………………………...55 圖2.12 感光型聚醯亞胺烘烤溫度與時間之關係圖。……………….…...56 圖2.13 感光型聚醯亞胺未超過玻態轉換溫度硬烤,薄膜產生裂紋。…56 圖2.14 聚醯亞胺以超過玻態轉換溫度300℃烘烤,製程成品圖。….….56 圖2.15 HMDS進行塗底,(a)塗底後與(b)固化後之化學結構。………...57 圖2.16 光學微影圖像轉移詳細步驟。…………………………………...57 圖2.17 用於圖形轉移製程的剝離(lift off)製程。………………………..58 圖2.18 薄膜因底材熱膨漲係數不同而產生之變形圖。…………….…..58 圖2.19 不同沉積條件下金屬圖形。……………………………………...59 圖3.1 鉑金屬熱處理電阻溫度係數關係圖。………………………….…60 圖3.2 感測器與數據收集系統介面圖。……………………………….…60 圖3.3 液滴實驗模擬溫度響應頻率示意圖。………………………..….……61 圖3.3 感測器對液態純水之升溫(a)、降溫(b)響應頻率可達1.1kHz。…....61 圖3.5 溫度感測器物理響應頻率與體積關係圖。……………………....…..62 圖3.6 感測器線寬20μm SEM圖。……………………………………...….62 圖3.7 感測器線寬4μm 電子顯微鏡圖。…………………….………..…...62 圖3.8 感測器分佈面積(a)1000μm2及(b)2600μm2溫度響應頻率圖。.…..63 圖3.9 可撓式溫度感測器陣列貼附於圓柱體表面上於風洞測試。….….....63 圖3.10 可撓式溫度感測器之定電流電路P-Spice模擬。…………….….…63 圖3.11 可撓式溫度感測器不同電阻值之輸出訊號比較。…………..……..64 圖3.12 二維圓柱體之表面流場分離示意圖。………………………..……..64 圖3.13 感測器電阻值(90 Ω)於雷諾數為2.82×104之量測結果。………...64 圖3.14 感測器電阻值(90 Ω)於不同雷諾數之量測結果。……………..….65 圖3.15 感測器電阻值(129 Ω)於不同雷諾數之量測結果。…………….....65 圖3.16 T型鈍形體模型示意圖及熱膜感測器放置位置。……………..…65 圖3.17 T型鈍形體模型及風洞位置示意圖。……………………..…..…..66 圖3.18 T型鈍形體延長平板上中心1d之位置不同雷諾數之溢放信號。………………………………………………………………………….....66 圖3.19 T型鈍形體延長平板上前緣0.5d之位置不同雷諾數之溢放信號。………………………………………………………………………….…67 圖3.20 T型鈍形體延長平板上後緣1.6d之位置不同雷諾數之溢放信號。…………………………………………………………………………....67 圖4.1 雷諾數Re=9400,圓柱表面不同位置渦流溢放頻率信號品質。……………………………………………………………………….…...68 圖4.2 雷諾數Re=28800,圓柱表面不同位置渦流溢放頻率信號品質。…………………………………………………………………….….…..69 圖4.3 Re=28800,熱膜感測器在不同位置下即時訊號圖。……….…….70 圖4.4 Wavelet Transform示意圖。……………………………………...…..70 圖4.5 Re=28200,圓柱75°小波轉換頻譜圖。……………………….……...71 圖4.6 Re=28800,圓柱80°小波轉換頻譜圖。……………………….……...71 圖4.7 雷諾數Re=28800,圓柱75°與80°小波轉換後瞬時頻率圖。….……72 圖4.8 雷諾數Re=28800,各角度座落平均溢放頻率±5%之百分比。….….72 圖4.9 3×1熱膜感測器陣列貼附於圓柱表面及其相對位置示意圖。.…….72 圖4.10 熱膜感測器於圓柱θ=65°、75.8°以及79.4°位置即時訊號圖。……………………………………………………………………..….…..73 圖4.11 熱膜感測器於圓柱θ=67.5°、78.3°以及81.9°位置即時訊號圖。……………………………………………………………………….……73 圖4.12 熱膜感測器於圓柱θ=70°、80.8°以及84.4°位置即時訊號圖。………………………………………………………………………….…74 圖4.13 熱膜感測器於圓柱θ=65°、75.8°以及79.4°位置瞬時頻率圖(經小波轉換分析之結果)。……………………………………………………….…..74 圖4.14 熱膜感測器於圓柱θ=67.5°、78.3°以及81.9°位置瞬時頻率圖。…………………………………………………………………….………75 圖4.15 熱膜感測器於圓柱θ=70°、80.8°以及84.4°位置瞬時頻率圖。…………………………………………………………………….………75 圖4.16 雷諾數38400,各角度座落平均溢放頻率±5%之百分比。….……..76 圖4.17 瞬時頻率函數f(t)與低頻擾動函數A(t)關係圖。………………….…76 圖4.18 感測器S1、S2、S3在θ=65°、75.8°以及79.4°三點在t=1-2(sec)區段頻譜能量積分函數E(t)圖。…………………………………………..….…77 圖4.19 頻譜能量函數E’1(t)、E’2(t)和E’3(t)正交化之關係圖。……..……..77 圖5.1 以焊接方式封裝而未達完全之平坦化。……………………….…….78 圖5.2 可撓式熱絲感測器示意圖。…………………………………….…….78 圖5.3 熱膜感測器陣列貼於沿圓柱側向表面貼覆示意圖。………….…..…78

    參考文獻

    [1] McCroskey, W. J., “Some Current Research in Unsteady Fluid Dynamics,” J.Fluids Engrg., Vol.99, 1982, pp.8-38.
    [2] Huang, J. B., Ho, C. M., and Jaing, F., “Dynamic Behavior and Application of Micro Sensors with Negative Temperature Coefficient,” Proc. of Instrumentation and Measurement Technology Conference, Pasadena, 1998, pp. 1191-1194.
    [3] Beebe, D. J., and Denton, D. D.,“A Polyimide Packaging Process For A Semiconductor Diaphragm Tactile Sensor,” Proc. of the Twelfth Annual International Conference of the IEEE, University of Wisconsin, USA , 1990, pp. 1058-1059.
    [4] Beebe, D. J., and Denton, D. D., ”A Flexible Polyimide-Based Package for Silicon Sensors,” Sensors and Actuators A, Vol.44, 1994, pp. 57-64.
    [5] Lee, G. B., Tai, Y. C., and Ho, C. M., ”A flexible micromachine-baesd shear-stress sensor array and its application to separation- point detection,” Sensors and Actuators A, Vol. 79, 2000, pp. 194-203.
    [6] Jiang, F., Tai, Y. C., Walsh, K., Tsao, T., Lee, G. B., and Ho, C. M., “A flexible MEMS technology and its first application to shear stress sensor skin,” Micro Electro Mechanical Systems, 1997. Proceedings, IEEE., Tenth Annual International Workshop, Pasadena, CA, USA, 1997, pp. 465-470.
    [7] Gardner, J. W., Microsensors Principle and Application, Fourth Edition, John Wiley & Sons, Inc., 1944.
    [8] Tritton, D. J., “Experiments on the Flow Past a Circular Cylinder at Low Reynolds Number,” J. Fluid Mech., Vol. 16, 1959, pp. 547-567.
    [9] Gerrard, J. H., “The Three-Dimensional Structure of the Wake of a Circular Cylinder,” J. Fluid Mech., Vol.25, part 1, 1966, pp. 143-164.
    [10] Bloor, M. S., “The Transition to Turbulence in the Wake of a Circular Cylinder,” J. Fluid Mech., Vol.19, 1964, pp. 290-304.
    [11] Gerrard, J. H., “The Three-Dimensional Structure of the Wake of a Circular Cylinder,” J. Fluid Mech., Vol.25, part 1, 1966, pp. 143-164.
    [12] Williamosn, C. H. K., “Vortex Dynamics in the Cylinder Wake,” Ann. Rev. Fluid. Mech., Vol. 28, 1996, pp. 477-539.
    [13] Szepessy, S., and Bearman, P. W., “Aspect Ratio and End Plate Effects on Vortex Shedding from a Circular Cylinder,” J. Fluid Mech., Vol. 234, 1992, pp. 191-217.
    [14] Yang, P. M., Hussein, M., and Williams, D. R., “Oblique and Parallel Wave Interaction in the Near Wake of a Circular Cylinder,” Phys. Fluids A., Vol. 5, No.7, 1993, pp. 1657-1661.
    [15] Blackburn, H. M., and Melbourn, W. H., “The Effect of Free-Stream Turbulence on Sectional Lift Forces on a Circular Cylinder,” J. Fluid Mech., Vol. 306, 1996, pp. 267-292.
    [16] Miau, J. J., Wang, J. T., Chou, J. H., and Wei, C. Y., “Characteristics of Low-Frequency Variations Embedded in Vortex Shedding Process,” J. Fluids Struct., Vol. 13, 1999, pp. 339-359.
    [17] Norberg, C., “An Experimental Investigation of the Flow Around a Circular Cylinder: Influence of Aspect Ratio,” J. Fluid Mech., Vol. 258, 1994, pp. 287-316.
    [18] Roshko, A. “On the development of turbulent wakes from vortex streets”, NACA TN.2913, 1954.
    [19] Roshko, A. “On the drag and shedding frequency of two-dimensional bluff body”, NACA TN.3169, 1954.
    [20] Roshko. A. “On the wake and drag of bluff bodies”, J. Aero. Sci, vol.22, 1955, pp.124-132.
    [21] Roshko, A., and Fiszdon, W., “On the persistence of transition in the near wake”, problems in Hydrodynamics and Continunm mechanics, Philadelphia, SIAM, 1954, pp.606-616.
    [22] Wieselsberger, C., “New data on the law of hydro and aerodynamic resistance”, Physikalsche Zeitschrift, 22, 1922, pp.321-328.
    [23] Koromilas, C. A., and Telionis, D. P., “Unsteady Laminar Separation:an experimental study”, J. Fluid Mech., Vol. 97, 1980, pp. 347-384.
    [24] Moore, F. K., In boundary layer Research, 1958, pp.296.
    [25] Telion, D. P., “Review-Unsteady Boundary Layers, Separated and Attached”,J. of Fluids Engineering, vol.101, 1979, pp29-43.
    [26] Lee, G. B., Hu, J. H., and Miau, J. J., “A Flexible Skin with Temperature Sensor Array,” Journal of the Chinese Institute of Engineers, 2002 .
    [27] Anthony, R. J., and Jones, T. V., ”Visualization of Transitional Boundary Layer Heat Flux Using High Density Thin Film Arrays,” AIAA Paper No.2001-0553, 2001 .
    [28] Ghosh, M. K., and Mittal, K. L., “Polyimides: Fundamentals and Applications,” Marcel Dekker, New York, 1996.
    [29] Wilson, D., Stenzenberger, K. L., and Hergenrother, P. M., “Polyimides,” Blackie, Glasgow and London, 1990.
    [30] Bessonov, M. L., Kotondryavtsev, M. M., and Laius, L. A., “Polyimides: Thermally Stable Polymers,” Consultants Bureau, New York and London, 1987.
    [31] Bessonov, M. L., Kotondryavtsev, M. M., and Laius, L. A., “Polyimides: Thermally Stable Polymers,” Consultants Bureau, New York and London, 1987.
    [32] Knudsen, J. D., and Katz, D. L., Fluid Dynamics and Heat Transfer, McGraw-Hill Book Company, New York, 1958.
    [33] Kirk D. Hagen, Heat Transfer with Applications, Prentice-Hall Inc., New Jersey, 1999.
    [33] Schlichting, H., Boundary Layer Theory, 4th ed., McGraw-Hill, New York, 1960, pp. 407-412.
    [34] Zinoviev, V., Lebigia, V., Chung, K. M., and Miau, J. J., Using Hilbert Spectral Analysis in Hot-Wire Measurements in Compressible Subsonic Flows, AIAA paper No.2001-0308, 2001.
    [35] Roshko, A., “Experiments on The Flow Past a Circular Cylinder at Very High Reynolds Number,” J. Fluid Mech., Vol. 10 , 1961, pp. 345-356.
    [36] Kirk, D., Heat Transfer with Applications, Upper Saddle River, N.J., 1999, pp. 260-265.
    [37] Zhou, Y., and Wong, W., “Fluctating Temperature Measurements on a Cylinder in Cross-Flow Using Fiber-Optic Bragg Grating Sensor, Lisbon,“ 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2001.
    [38] Prophet. G.., “Vortex flowmeters” Control and Instrum, vol.9, No.8, 1977, pp. 54-57.
    [39] Ogawa. Y., and Matsubara. N., “New type of vortex shedding flowmeter”, Proc. International Symposium ‘FLUCOME 85’ Tokyo, 1985, pp.1009-1014.
    [40] EI Wahed, A.K., and Sproston, J.L., “The influence of shedder shape on the performance of the electrostatic vortex flowmeter”, Flow Meas. Instrun, vol.2, July 1991, pp169-174.
    [41] 楊啟昌,“延長平板對鈍形體所產生渦流溢放之影響”,成大航太所碩士論文,1992。
    [42] Hu, C. C., Miau J. J., and Chau, J. H., “Instantaneous vortex-shedding behavior in periodically varying flow”, Proc. R. Soc. Lond. A (2002) 458, 2002, pp.911-932.
    [43] Coureglongue, J., On the existence of two families of eddies behind immersed solids, Comptes Rendus Academie Sciences, vol.189, 1929, pp.972-974.
    [44] Linke, W., New measurements on aerodynamics of cylinders particularly their friction resistance, Physikalische Zeitschrift, vol.32, 1931, pp.900-914.
    [45] Mattingly, G. E., An experimental study of the three dimensionality of the flow around a circular cylinder, University of Maryland, Tech. Note BN-295, 1962.
    [46] Toebes, G. H., Fluidelastic Features of flow around cylinder, Proceeding International Seminar on Wind Effects, ed. A. Davenport, Canada, 1967, pp.323-341.
    [47] Toebes, G. H., The unsteady flow and wake near an oscillating Cylinder, ASME, Journal Basic Engineering, vol.91, 1969, pp.493-505.
    [48] Dwyer, H. A. and Mccroskey, W. J., Oscillating flow over a cylinder at large Reynolds number, Journal of Fluid Mechanics, vol. 61(4), 1973, pp.753-767.
    [49] Higuchi, H., Kim, H. J. and Farell, C., On flow separation and reattachment around a circular cylinder atcritical Reynolds numbers. Journal of Fluid Mechanics, vol 200, 1989, pp.149-171.
    [50] Achenbach, E., Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 x 106, Journal of Fluid Mechanics, vol. 34(4), 1968, pp.625-639.
    [51] Chen, S. S., Flow-induced vibration of circular cylindrical structures. Hemisphere Publishing Corporation, Washington, 1987.
    [52] Amadi, E., and Hengjun Z., Signal Analysis Applied to Vortex Flowmeters, IEEE Transactions on Instrument and Measurement, vol.41, December 1992, pp.1001-1004.
    [53] Daubechies, I., Ten Lectures on Wavelet, Philadelphia, Pa. :/Society for Industrial and Applied Mathematics, 1992.
    [54] Daubechies, I., and Lagarias, J., Two-scale difference equations. Part I: Existence and global regularity of solutions, SIAM J. Math. Anal. vol.22, 1991, pp.1388-1410.
    [55] Daubechies, I., and Lagarias, J., Two-scale difference equations. Part II: Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. vol.24, 1992.
    [56] Grossmann, A., and Morlet, J., “Decomposition of Hardy function intosquare integrable wavelets of constant shape,” SIAM J. Math. Anal. vol.15(4), 1984, pp. 736-783.

    下載圖示 校內:立即公開
    校外:2003-07-28公開
    QR CODE