| 研究生: |
蘇勇曄 Su, Yung-Yeh |
|---|---|
| 論文名稱: |
胰臟癌精準醫療及其臨床應用 Precision medicine in pancreatic cancer and its clinical application |
| 指導教授: |
沈延盛
Shan, Yan-Shen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 次世代定序 、基因多型性 、鉑金化療 、同源重組修復 、癌幹細胞 |
| 外文關鍵詞: | Next-generation sequencing, gene polymorphism, platinum-based chemotherapy, homologous recombination, cancer stemness |
| 相關次數: | 點閱:80 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胰臟癌為先進國家成為十大癌症死因第三或第四名。胰臟癌目前僅有不到十項藥物被證實具有療效。我們假設通過精準醫學可以改善胰臟癌患者的預後。為此,將建立自有的次世代定序(NGS),包括目標定序、全外顯子定序和單細胞RNA定序,然後將自有的NGS用於胰臟癌的轉譯研究。首先專注於UGT1A1多型性與藥物毒性。接著,評估使用內視鏡超音波引導的細針活檢(EUS-FNB)獲得的組織是否適用於次世代定序及單細胞RNA定序。另外亦進行遺傳系(germline)全外顯子定序以探討突變與療效的相關性。最後,探索遺傳系突變、癌症幹細胞和上皮間質轉變之間的相互作用。採用的特定目標定序方式為兩階段放大次世代定序(Two-step PCR Amplicon NGS)。首先,設計目標基因primer時,與傳統PCR類似,但是後端會多一段adaptor序列,如此一來,進行第一階段PCR放大後之的產物尾端將全部帶有adaptor序列,接著將以adaptor序列為primer將用以分辨檢體來源的index barcode以及後續上機定序所需使用的Illumina P5/P7 序列進行第二階段PCR,之後的產物及稱為次世代定序的文庫,可接著上機。上機後產生的序列將儲存成FASTQ檔案。全外顯子定序的方式則是先將DNA打斷成300 base pair 附近的大小,接著進行末端修補(end repair)、A尾(A tailing)後一樣連接上adaptor/index barcode,接著使用全外顯子的探針抓取全外顯子後進行定序。單細胞定序則是先將細胞鏈結溶解成游離單細胞後,以油滴包埋的技術使每個油滴只包含一顆細胞後進行文庫製備。分析接受nal-IRI治療的患者之UGT1A1的基因多型性(UGT1A1*6, UGT1A1*28)後,發現約9.3%患者帶有兩個allele變異,其發生嚴重白血球低下的機率高達73.3%,相較於只帶有0-1個變異的患者只有38.1%會產生此副作用(p=0.012)。在EUS研究中,紅色組織的總DNA量顯著高於白色組織(2.99微克比0.70微克)。 KRAS突變等位基因頻率在白色和紅色組織之間高度一致(Spearman相關係數r=0.66,P<0.0001),證實了紅色組織和白色組織一樣可用於次世代定序。在單細胞分析研究中,早期和晚期胰臟癌共歸納出15個主要細胞型。癌細胞-4的比例在晚期明顯較高。差異表達基因分析顯示,在癌細胞-4中,UBE2C是最高表達的基因。在TCGA PAAD中, UBE2C高表達的胰腺癌具有顯著較差的存活。關於T2212研究,共有55名患者參與,其中27名被隨機分配接受modified FOLFIRINOX,28名接受GOFL,中位存活期分別為19.6個月及17.9個月。對於730例胰臟癌的治療分析,包括159名可切除的胰臟癌患者,有46人接受新輔助化療、113人直接手術,中位存活期分別為35.3個月和21.7個月。對於遺傳系全外顯子定序研究, 527名患者定序後,104人(19.7%)帶有遺傳性癌症相關基因突變,包含約10%含有同源重組基因突變,此外,分析320名有接受標準化療的晚期胰臟癌,在32名有同源重組修復基因突變的患者中,接受第一線鉑金類化療的中位存活期為26.1個月,接受第一線非鉑金類化療的中位存活期則僅9.6個月(P=0.001)。對於癌幹細胞的研究,癌症幹細胞與同源重組基因突變幾乎不會同時存在,因此可將患者分為三組,即無癌幹細胞/有同源重組基因突變、無癌幹細胞/無同源重組基因突變和有癌幹細胞,相應的中位存活期分別為15.9個月、11.8個月和6.6個月(P=0.00096)。在過去的五年裡,我們通過建立自家高成本效益基因檢測,確保了精確的基因數據定序和品質控制。其中第一個研究主題為台灣UGT1A1多型性,幫助醫師通過劑量調整來降低治療毒性。也剖析了台灣人胰臟癌的遺傳性基因圖譜,為精準醫療提供研究資源。並發現癌幹細胞與同源重組基因突變幾乎不會同時存在,更新了我們對胰臟癌的理解。總結,自行開發的基因檢測在解決臨床問題和基因研究方面具有顯著的貢獻,使我們能在胰臟癌轉譯研究領域佔有一席之地。
Pancreatic ductal adenocarcinoma (PDAC) is currently the third or fourth leading cause of cancer death in developed countries. Less than 10 drugs are approved in PDAC. We hypothesize that we may improve the prognosis of PDAC patients through precision medicine. We establish our in-house next generation sequencing (NGS) pipeline, including target sequencing, whole exome sequencing (WES) and single cell RNA sequencing (scRNA-seq). We first apply in-house NGS to study UGT1A1 polymorphism. Next, we examined the feasibility of using endoscopic ultrasound-guided biopsy tissue for NGS and scRNA-seq. Then we performed germline WES to investigate the correlation between germline mutations and treatment outcomes. Finally, we explored the interplay among germline mutations and cancer stem cell (CSC). We employed a two-step PCR amplicon NGS method for targeted sequencing. The design of primers was similar to traditional PCR except for an additional adaptor sequence. In the first PCR, the products had the adaptor sequence. In the second PCR, the adaptor sequence was used as a primer to attach the index barcode and the Illumina P5/P7 sequences required for subsequent sequencing. The resulting products, known as the NGS library, was loaded onto the sequencing machine and results were stored as FASTQ files. For WES, the DNA was initially fragmented into sizes around 300 base pairs. Subsequently, end repair and A-tailing were performed, followed by the attachment of an adaptor/index barcode. Finally, exome was captured using probes. In scRNA-seq, first tissue was dissociated into individual cells and constructed as library using the oil droplets technique. In the UGT1A1 cohort, the frequencies of homozygosity/double heterozygosity (UGT1A1*6/6, UGT1A1*28/28, or UGT1A1*6/*28) was 9.3%. Patients with homozygosity/double heterozygosity had higher incidence of grade ≥3 neutropenia (73.3%) than others (38.1%) (p=0.012). In the EUS cohort, the DNA amount was higher in red tissue (2.99 µg) than white tissue (0.70 µg). The mutation allele frequency of KRAS was highly concordant between white and red tissue (Spearman correlation coefficient r=0.66, P<0.0001). In scRNA-seq, 15 major cell subtypes were identified across early and late stage. The proportion of cancer cells cluster-4 was higher in late stage. Differentially expressed genes analysis showed UBE2C was the most highly expressed gene in cancer cells cluster-4. In TCGA PAAD dataset, UBE2C high expression PDAC had significantly poor survival. For T2212 study, 55 patients were enrolled, with 27 randomized to FOLFIRINOX and 28 to GOFL with a median overall survival (OS) of 19.6 and 17.9 months, respectively. For the cross sectional study, 159 patients with resectable PDAC, 46 underwent neoadjuvant chemotherapy and 113 underwent upfront surgery. The corresponding median OS was 35.3 months and 21.7 months, respectively. For WES cohort, 104 of 527 patients harbored homologous recombination gene mutations (gHRmut). Patients with gHRmut treated with 1L platinum had better median OS (26.1 months) than those treated with 1L non-platinum (9.6 months)(P=0.017). For CSC research, we found CSC phenotype tends to be mutually exclusive with gHRmut. Thus, patients were categorized into three groups, CSC-negative/gHRmut, CSC-negative/gHRwt, and CSC-positive groups and the corresponding median OS was 15.9 months, 11.8 months and 6.6 months, respectively (P=0.00096). Over the past five years, we established a cost-effective in-house NGS pipeline, ensuring data sequencing and quality control. We addressed UGT1A1 polymorphisms in Taiwan, aiding physicians in managing treatment toxicities. We uncovered the genetic landscape of PDAC in the Taiwanese population. The finding of mutual exclusivity between CSC phenotype and gHRmut reshaped our understanding of PDAC. In conclusion, our in-house NGS pipeline significantly contributes to clinical problem-solving and genetic research.
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7-33.
2. Helmstaedter L, Riemann JF. Pancreatic cancer--EUS and early diagnosis. Langenbecks Arch Surg. 2008;393(6):923-927.
3. Hewitt MJ, McPhail MJ, Possamai L, Dhar A, Vlavianos P, Monahan KJ. EUS-guided FNA for diagnosis of solid pancreatic neoplasms: a meta-analysis. Gastrointest Endosc. 2012;75(2):319-331.
4. Adler DG, Jacobson BC, Davila RE, et al. ASGE guideline: complications of EUS. Gastrointest Endosc. 2005;61(1):8-12.
5. Itoi T, Itokawa F, Sofuni A, et al. Puncture of solid pancreatic tumors guided by endoscopic ultrasonography: a pilot study series comparing Trucut and 19-gauge and 22-gauge aspiration needles. Endoscopy. 2005;37(4):362-366.
6. Karadsheh Z, Al-Haddad M. Endoscopic ultrasound-guided fine-needle aspiration needles: which one and in what situation? Gastrointest Endosc Clin N Am. 2014;24(1):57-69.
7. Rahib L, Wehner MR, Matrisian LM, Nead KT. Estimated Projection of US Cancer Incidence and Death to 2040. JAMA Netw Open. 2021;4(4):e214708.
8. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395(10242):2008-2020.
9. Conroy T, Hammel P, Hebbar M, et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N Engl J Med. 2018;379(25):2395-2406.
10. Snyder RA, Parikh AA. Actual Survival in Patients with Resected Pancreatic Cancer: How Do Real-World Data Compare with Clinical Trial Evidence? Ann Surg Oncol. 2021;28(13):8014-8016.
11. Evans DB. The Complexity of Neoadjuvant Therapy for Operable Pancreatic Cancer: Lessons Learned From SWOG S1505. Ann Surg. 2020;272(3):487.
12. Ho CK, Kleeff J, Friess H, Buchler MW. Complications of pancreatic surgery. HPB (Oxford). 2005;7(2):99-108.
13. Ansari D, Bauden M, Bergstrom S, Rylance R, Marko-Varga G, Andersson R. Relationship between tumour size and outcome in pancreatic ductal adenocarcinoma. Br J Surg. 2017;104(5):600-607.
14. Lau SC, Cheung WY. Evolving treatment landscape for early and advanced pancreatic cancer. World J Gastrointest Oncol. 2017;9(7):281-292.
15. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40-51.
16. Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817-1825.
17. Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691-1703.
18. Wang-Gillam A, Li CP, Bodoky G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016;387(10018):545-557.
19. Ch'ang HJ, Huang CL, Wang HP, et al. Phase II study of biweekly gemcitabine followed by oxaliplatin and simplified 48-h infusion of 5-fluorouracil/leucovorin (GOFL) in advanced pancreatic cancer. Cancer Chemother Pharmacol. 2009;64(6):1173-1179.
20. Chiang NJ, Tsai KK, Hsiao CF, et al. A multicenter, phase I/II trial of biweekly S-1, leucovorin, oxaliplatin and gemcitabine in metastatic pancreatic adenocarcinoma-TCOG T1211 study. Eur J Cancer. 2020;124:123-130.
21. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463-5467.
22. Slatko BE, Gardner AF, Ausubel FM. Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol. 2018;122(1):e59.
23. Greenland S, Morgenstern H. Ecological bias, confounding, and effect modification. Int J Epidemiol. 1989;18(1):269-274.
24. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50(8):1-14.
25. Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399-405.
26. Bailey P, Chang DK, Nones K, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47-52.
27. Kanno A, Yasuda I, Irisawa A, et al. Adverse events of endoscopic ultrasound-guided fine-needle aspiration for histologic diagnosis in Japanese tertiary centers: Multicenter retrospective study. Dig Endosc. 2021;33(7):1146-1157.
28. Lin W, Noel P, Borazanci EH, et al. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med. 2020;12(1):80.
29. Chen K, Wang Q, Li M, et al. Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. EBioMedicine. 2021;66:103315.
30. Bhandari J, Thada PK, Yadav D. Crigler-Najjar Syndrome. In: StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Pawan Thada declares no relevant financial relationships with ineligible companies. Disclosure: Deepak Yadav declares no relevant financial relationships with ineligible companies.2023.
31. Fretzayas A, Moustaki M, Liapi O, Karpathios T. Gilbert syndrome. Eur J Pediatr. 2012;171(1):11-15.
32. Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci U S A. 1998;95(14):8170-8174.
33. Hall D, Ybazeta G, Destro-Bisol G, Petzl-Erler ML, Di Rienzo A. Variability at the uridine diphosphate glucuronosyltransferase 1A1 promoter in human populations and primates. Pharmacogenetics. 1999;9(5):591-599.
34. Bosma PJ, Chowdhury JR, Bakker C, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med. 1995;333(18):1171-1175.
35. Akaba K, Kimura T, Sasaki A, et al. Neonatal hyperbilirubinemia and a common mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene in Japanese. J Hum Genet. 1999;44(1):22-25.
36. Zhang X, Yin JF, Zhang J, Kong SJ, Zhang HY, Chen XM. UGT1A1*6 polymorphisms are correlated with irinotecan-induced neutropenia: a systematic review and meta-analysis. Cancer Chemother Pharmacol. 2017;80(1):135-149.
37. Adiwijaya BS, Kim J, Lang I, et al. Population Pharmacokinetics of Liposomal Irinotecan in Patients With Cancer. Clin Pharmacol Ther. 2017;102(6):997-1005.
38. Brendel K, Bekaii-Saab T, Boland PM, et al. Population pharmacokinetics of liposomal irinotecan in patients with cancer and exposure-safety analyses in patients with metastatic pancreatic cancer. CPT Pharmacometrics Syst Pharmacol. 2021;10(12):1550-1563.
39. Petersen GM. Familial pancreatic cancer. Semin Oncol. 2016;43(5):548-553.
40. Heeke AL, Pishvaian MJ, Lynce F, et al. Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO Precis Oncol. 2018;2018.
41. Connor AA, Denroche RE, Jang GH, et al. Association of Distinct Mutational Signatures With Correlates of Increased Immune Activity in Pancreatic Ductal Adenocarcinoma. JAMA Oncol. 2017;3(6):774-783.
42. Thompson D, Easton DF, Breast Cancer Linkage C. Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst. 2002;94(18):1358-1365.
43. Kastrinos F, Mukherjee B, Tayob N, et al. Risk of pancreatic cancer in families with Lynch syndrome. JAMA. 2009;302(16):1790-1795.
44. Shindo K, Yu J, Suenaga M, et al. Deleterious Germline Mutations in Patients With Apparently Sporadic Pancreatic Adenocarcinoma. J Clin Oncol. 2017;35(30):3382-3390.
45. Hu C, Hart SN, Polley EC, et al. Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA. 2018;319(23):2401-2409.
46. Casolino R, Paiella S, Azzolina D, et al. Homologous Recombination Deficiency in Pancreatic Cancer: A Systematic Review and Prevalence Meta-Analysis. J Clin Oncol. 2021;39(23):2617-2631.
47. Golan T, Javle M. DNA Repair Dysfunction in Pancreatic Cancer: A Clinically Relevant Subtype for Drug Development. J Natl Compr Canc Netw. 2017;15(8):1063-1069.
48. Singhi AD, George B, Greenbowe JR, et al. Real-Time Targeted Genome Profile Analysis of Pancreatic Ductal Adenocarcinomas Identifies Genetic Alterations That Might Be Targeted With Existing Drugs or Used as Biomarkers. Gastroenterology. 2019;156(8):2242-2253 e2244.
49. Waddell N, Pajic M, Patch AM, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495-501.
50. Witkiewicz AK, McMillan EA, Balaji U, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744.
51. Barrett MT, Deiotte R, Lenkiewicz E, et al. Clinical study of genomic drivers in pancreatic ductal adenocarcinoma. Br J Cancer. 2017;117(4):572-582.
52. Golan T, Hammel P, Reni M, et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N Engl J Med. 2019;381(4):317-327.
53. Shah SM, Demidova EV, Lesh RW, et al. Therapeutic implications of germline vulnerabilities in DNA repair for precision oncology. Cancer Treat Rev. 2022;104:102337.
54. O'Reilly EM, Lee JW, Lowery MA, et al. Phase 1 trial evaluating cisplatin, gemcitabine, and veliparib in 2 patient cohorts: Germline BRCA mutation carriers and wild-type BRCA pancreatic ductal adenocarcinoma. Cancer. 2018;124(7):1374-1382.
55. Stewart MD, Merino Vega D, Arend RC, et al. Homologous Recombination Deficiency: Concepts, Definitions, and Assays. Oncologist. 2022;27(3):167-174.
56. Samadder NJ, Riegert-Johnson D, Boardman L, et al. Comparison of Universal Genetic Testing vs Guideline-Directed Targeted Testing for Patients With Hereditary Cancer Syndrome. JAMA Oncol. 2021;7(2):230-237.
57. Tan E, Hicks JK, Blue K, Kim RD, Carballido EM, Kim DW. Efficacy of olaparib therapy in metastatic pancreatic ductal adenocarcinoma (PDAC) with homologous recombination deficiency (HRD). Journal of Clinical Oncology. 2021;39(15_suppl):e16266-e16266.
58. Golan T, Kanji ZS, Epelbaum R, et al. Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. Br J Cancer. 2014;111(6):1132-1138.
59. Pishvaian MJ, Blais EM, Brody JR, et al. Outcomes in Patients With Pancreatic Adenocarcinoma With Genetic Mutations in DNA Damage Response Pathways: Results From the Know Your Tumor Program. JCO Precis Oncol. 2019;3:1-10.
60. Rezayatmand H, Razmkhah M, Razeghian-Jahromi I. Drug resistance in cancer therapy: the Pandora's Box of cancer stem cells. Stem Cell Res Ther. 2022;13(1):181.
61. Zhao W, Li Y, Zhang X. Stemness-Related Markers in Cancer. Cancer Transl Med. 2017;3(3):87-95.
62. Hou YC, Chao YJ, Tung HL, Wang HC, Shan YS. Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma. Cancer. 2014;120(17):2766-2777.
63. Immervoll H, Hoem D, Steffensen OJ, Miletic H, Molven A. Visualization of CD44 and CD133 in normal pancreas and pancreatic ductal adenocarcinomas: non-overlapping membrane expression in cell populations positive for both markers. J Histochem Cytochem. 2011;59(4):441-455.
64. Abad E, Graifer D, Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Lett. 2020;474:106-117.
65. Ghosh D, Raghavan SC. Nonhomologous end joining: new accessory factors fine tune the machinery. Trends Genet. 2021;37(6):582-599.
66. Featherstone C, Jackson SP. DNA double-strand break repair. Curr Biol. 1999;9(20):R759-761.
67. King HO, Brend T, Payne HL, et al. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells. Stem Cell Reports. 2017;8(1):125-139.
68. Mathews LA, Cabarcas SM, Hurt EM, Zhang X, Jaffee EM, Farrar WL. Increased expression of DNA repair genes in invasive human pancreatic cancer cells. Pancreas. 2011;40(5):730-739.
69. Desai A, Webb B, Gerson SL. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells. Radiother Oncol. 2014;110(3):538-545.
70. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420-1428.
71. Martinelli P, Carrillo-de Santa Pau E, Cox T, et al. GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut. 2017;66(9):1665-1676.
72. O'Kane GM, Grunwald BT, Jang GH, et al. GATA6 Expression Distinguishes Classical and Basal-like Subtypes in Advanced Pancreatic Cancer. Clin Cancer Res. 2020;26(18):4901-4910.
73. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112(12):1776-1784.
74. Nathansen J, Meyer F, Muller L, Schmitz M, Borgmann K, Dubrovska A. Beyond the Double-Strand Breaks: The Role of DNA Repair Proteins in Cancer Stem-Cell Regulation. Cancers (Basel). 2021;13(19).
75. Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther. 2021;6(1):62.
76. Korbie DJ, Mattick JS. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc. 2008;3(9):1452-1456.
77. Isaji S, Mizuno S, Windsor JA, et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology. 2018;18(1):2-11.
78. Kolmogorov–Smirnov Test. In: The Concise Encyclopedia of Statistics. New York, NY: Springer New York; 2008:283-287.
79. Sprent P. Fisher Exact Test. In: Lovric M, ed. International Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011:524-525.
80. Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res. 2010;1(4):274-278.
81. McLaren W, Gil L, Hunt SE, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122.
82. Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 2020;12(1):103.
83. Kopanos C, Tsiolkas V, Kouris A, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35(11):1978-1980.
84. Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-D1067.
85. Landrum MJ, Chitipiralla S, Brown GR, et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 2020;48(D1):D835-D844.
86. Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(D1):D862-868.
87. Landrum MJ, Lee JM, Riley GR, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(Database issue):D980-985.
88. Smigielski EM, Sirotkin K, Ward M, Sherry ST. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res. 2000;28(1):352-355.
89. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-311.
90. Sherry ST, Ward M, Sirotkin K. Use of molecular variation in the NCBI dbSNP database. Hum Mutat. 2000;15(1):68-75.
91. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-443.
92. Walsh R, Thomson KL, Ware JS, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19(2):192-203.
93. Minikel EV, Karczewski KJ, Martin HC, et al. Evaluating drug targets through human loss-of-function genetic variation. Nature. 2020;581(7809):459-464.
94. Gudmundsson S, Karczewski KJ, Francioli LC, et al. Addendum: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2021;597(7874):E3-E4.
95. Taliun D, Harris DN, Kessler MD, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021;590(7845):290-299.
96. Kowalski MH, Qian H, Hou Z, et al. Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet. 2019;15(12):e1008500.
97. Hu Y, Stilp AM, McHugh CP, et al. Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program. Am J Hum Genet. 2021;108(5):874-893.
98. Huerta-Chagoya A, Schroeder P, Mandla R, et al. The power of TOPMed imputation for the discovery of Latino-enriched rare variants associated with type 2 diabetes. Diabetologia. 2023;66(7):1273-1288.
99. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812-3814.
100. Kidson C. Health and the macro economy in a borderless world. Southeast Asian J Trop Med Public Health. 1997;28(3):453-455.
101. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40(Web Server issue):W452-457.
102. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7 20.
103. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-249.
104. Flanagan SE, Patch AM, Ellard S. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomarkers. 2010;14(4):533-537.
105. Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum Mutat. 2016;37(3):235-241.
106. Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat. 2013;34(9):E2393-2402.
107. Liu X, Jian X, Boerwinkle E. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat. 2011;32(8):894-899.
108. Frankish A, Diekhans M, Jungreis I, et al. Gencode 2021. Nucleic Acids Res. 2021;49(D1):D916-D923.
109. Alirezaie N, Kernohan KD, Hartley T, Majewski J, Hocking TD. ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants. Am J Hum Genet. 2018;103(4):474-483.
110. Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genomics. 2013;14 Suppl 3(Suppl 3):S3.
111. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31(16):2745-2747.
112. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19(9):1553-1561.
113. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol. 2010;6(12):e1001025.
114. Dong C, Wei P, Jian X, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24(8):2125-2137.
115. Fadista J, Oskolkov N, Hansson O, Groop L. LoFtool: a gene intolerance score based on loss-of-function variants in 60 706 individuals. Bioinformatics. 2017;33(4):471-474.
116. Feng BJ. PERCH: A Unified Framework for Disease Gene Prioritization. Hum Mutat. 2017;38(3):243-251.
117. Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics. 2009;25(12):i54-62.
118. Gonzalez-Perez A, Lopez-Bigas N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet. 2011;88(4):440-449.
119. Gulko B, Hubisz MJ, Gronau I, Siepel A. A method for calculating probabilities of fitness consequences for point mutations across the human genome. Nat Genet. 2015;47(3):276-283.
120. Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet. 2016;99(4):877-885.
121. Ionita-Laza I, McCallum K, Xu B, Buxbaum JD. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat Genet. 2016;48(2):214-220.
122. Jagadeesh KA, Wenger AM, Berger MJ, et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet. 2016;48(12):1581-1586.
123. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310-315.
124. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-291.
125. Li C, Zhi D, Wang K, Liu X. MetaRNN: differentiating rare pathogenic and rare benign missense SNVs and InDels using deep learning. Genome Med. 2022;14(1):115.
126. Lopes MC, Joyce C, Ritchie GR, et al. A combined functional annotation score for non-synonymous variants. Hum Hered. 2012;73(1):47-51.
127. Lu Q, Hu Y, Sun J, Cheng Y, Cheung KH, Zhao H. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data. Sci Rep. 2015;5:10576.
128. Malhis N, Jacobson M, Jones SJM, Gsponer J. LIST-S2: taxonomy based sorting of deleterious missense mutations across species. Nucleic Acids Res. 2020;48(W1):W154-W161.
129. McVicker G, Gordon D, Davis C, Green P. Widespread genomic signatures of natural selection in hominid evolution. PLoS Genet. 2009;5(5):e1000471.
130. Qi H, Zhang H, Zhao Y, et al. MVP predicts the pathogenicity of missense variants by deep learning. Nat Commun. 2021;12(1):510.
131. Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015;31(5):761-763.
132. Raimondi D, Tanyalcin I, Ferte J, et al. DEOGEN2: prediction and interactive visualization of single amino acid variant deleteriousness in human proteins. Nucleic Acids Res. 2017;45(W1):W201-W206.
133. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39(17):e118.
134. Rogers MF, Shihab HA, Mort M, Cooper DN, Gaunt TR, Campbell C. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics. 2018;34(3):511-513.
135. Samocha KE, Kosmicki JA, Karczewski KJ, et al. Regional missense constraint improves variant deleteriousness prediction. bioRxiv. 2017:148353.
136. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361-362.
137. Shihab HA, Gough J, Cooper DN, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat. 2013;34(1):57-65.
138. Shihab HA, Rogers MF, Gough J, et al. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics. 2015;31(10):1536-1543.
139. Sundaram L, Gao H, Padigepati SR, et al. Predicting the clinical impact of human mutation with deep neural networks. Nat Genet. 2018;50(8):1161-1170.
140. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11(1):1-9.
141. Shan YS, Chen LT, Wu JS, et al. Validation of genome-wide association study-identified single nucleotide polymorphisms in a case-control study of pancreatic cancer from Taiwan. J Biomed Sci. 2020;27(1):69.
142. Su YY, Chiang NJ, Chang JS, et al. The association between UGT1A1 polymorphisms and treatment toxicities of liposomal irinotecan. ESMO Open. 2022;8(1):100746.
143. Aguirre AJ, Nowak JA, Camarda ND, et al. Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. Cancer Discov. 2018;8(9):1096-1111.
144. Su YY, Chiang NJ, Chiu TJ, et al. Systemic treatments in pancreatic cancer: Taiwan pancreas society recommendation. Biomed J. 2023:100696.
145. Park W, Chen J, Chou JF, et al. Genomic methods identify homologous recombination deficiency in pancreas adenocarcinoma and optimize treatment selection. Clinical Cancer Research. 2020;26(13):3239-3247.
146. Sunakawa Y, Ichikawa W, Fujita K, et al. UGT1A1*1/*28 and *1/*6 genotypes have no effects on the efficacy and toxicity of FOLFIRI in Japanese patients with advanced colorectal cancer. Cancer Chemother Pharmacol. 2011;68(2):279-284.
147. Liu JY, Qu K, Sferruzza AD, Bender RA. Distribution of the UGT1A1*28 polymorphism in Caucasian and Asian populations in the US: a genomic analysis of 138 healthy individuals. Anticancer Drugs. 2007;18(6):693-696.
148. Ueno M, Nakamori S, Sugimori K, et al. nal-IRI+5-FU/LV versus 5-FU/LV in post-gemcitabine metastatic pancreatic cancer: Randomized phase 2 trial in Japanese patients. Cancer Med. 2020;9(24):9396-9408.
149. Nakai Y, Hamada T, Hakuta R, et al. A Meta-analysis of Slow Pull versus Suction for Endoscopic Ultrasound-Guided Tissue Acquisition. Gut Liver. 2021;15(4):625-633.
150. Bang JY, Jhala N, Seth A, et al. Standardisation of EUS-guided FNB technique for molecular profiling in pancreatic cancer: results of a randomised trial. Gut. 2023;72(7):1255-1257.
151. Motoi F, Kosuge T, Ueno H, et al. Randomized phase II/III trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer (Prep-02/JSAP05). Jpn J Clin Oncol. 2019;49(2):190-194.
152. Reni M, Balzano G, Zanon S, et al. Safety and efficacy of preoperative or postoperative chemotherapy for resectable pancreatic adenocarcinoma (PACT-15): a randomised, open-label, phase 2-3 trial. Lancet Gastroenterol Hepatol. 2018;3(6):413-423.
153. Abbaszadegan MR, Bagheri V, Razavi MS, Momtazi AA, Sahebkar A, Gholamin M. Isolation, identification, and characterization of cancer stem cells: A review. J Cell Physiol. 2017;232(8):2008-2018.
154. Liu YC, Yeh CT, Lin KH. Cancer Stem Cell Functions in Hepatocellular Carcinoma and Comprehensive Therapeutic Strategies. Cells. 2020;9(6).
155. Jing F, Kim HJ, Kim CH, Kim YJ, Lee JH, Kim HR. Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases. Int J Oncol. 2015;46(4):1582-1588.
156. Brungs D, Lochhead A, Iyer A, et al. Expression of cancer stem cell markers is prognostic in metastatic gastroesophageal adenocarcinoma. Pathology. 2019;51(5):474-480.
157. Padthaisong S, Thanee M, Namwat N, et al. Overexpression of a panel of cancer stem cell markers enhances the predictive capability of the progression and recurrence in the early stage cholangiocarcinoma. J Transl Med. 2020;18(1):64.
158. Okudela K, Woo T, Mitsui H, Tajiri M, Masuda M, Ohashi K. Expression of the potential cancer stem cell markers, CD133, CD44, ALDH1, and beta-catenin, in primary lung adenocarcinoma--their prognostic significance. Pathol Int. 2012;62(12):792-801.
159. Joseph C, Arshad M, Kurozomi S, et al. Overexpression of the cancer stem cell marker CD133 confers a poor prognosis in invasive breast cancer. Breast Cancer Res Treat. 2019;174(2):387-399.
160. Hou YC, Chao YJ, Hsieh MH, Tung HL, Wang HC, Shan YS. Low CD8(+) T Cell Infiltration and High PD-L1 Expression Are Associated with Level of CD44(+)/CD133(+) Cancer Stem Cells and Predict an Unfavorable Prognosis in Pancreatic Cancer. Cancers (Basel). 2019;11(4).
161. Poruk KE, Blackford AL, Weiss MJ, et al. Circulating Tumor Cells Expressing Markers of Tumor-Initiating Cells Predict Poor Survival and Cancer Recurrence in Patients with Pancreatic Ductal Adenocarcinoma. Clin Cancer Res. 2017;23(11):2681-2690.