簡易檢索 / 詳目顯示

研究生: 張智國
Chang, Chih-Kuo
論文名稱: 雷射激發螢光效應於氫/空氣/鉑兩相反應機構分析
The Analysis of Two-Phase Reactions by OH-LIPF Measurements of H2/Air Mixture Flowing Parallelly to a Pt Surface
指導教授: 袁曉峰
Yuan, Tony
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 144
中文關鍵詞: 雷射激發螢光兩相反應觸媒反應機構
外文關鍵詞: LIPF, two-phase reaction, catalyst, reaction mechanism
相關次數: 點閱:160下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文應用雷射激發螢光技術於氫/空氣混合氣流經鉑觸媒平板,觸媒反應釋出OH自由基之量測,藉由OH-LIPF與溫度量測結果,配合二維觸媒平板流模擬,以分析鉑觸媒兩相反應機構。
    本研究避免引發氣態燃燒,設定在三個不同流速(10、20與30cm/sec),當量比分別為0.32、0.28與0.26作為實驗條件;實驗溫度是以K-type熱電偶量測,並對熱輻射作修正。其結果顯示最高溫出現在平板前緣,平板表面溫度約1120K。經OH-LIPF量測半定量分析後,結果顯示OH濃度在近平板處最高,約5×1014 molecules/cc.,且遠離平板表面逐漸遞減。平板流模擬結果顯示,若不考慮兩相反應機構,OH濃度僅1012molecules/cc.,遠低於實驗量測結果,證實了非勻相反應機構兩相反應存在的可能性。
    靈敏度分析的結果顯示,HO2*與HO2對於OH生成是一關鍵物種,降低OH+ Pt* → OH* 與OH+O*→HO2* 的反應速率常數可增加近表面OH濃度;增加HO2+H=OH+OH的速率常數或降低HO2+OH=H2O+O2的速率常數可延緩氣態OH粒子被消耗。由於觸媒反應屬於低溫反應,目前低溫下化學反應資料仍有不足,因此對於氣態OH濃度模擬仍有改進空間。

    The existence of two-phase reactions on catalytic surface was investigated in this study. A laminar H2/air mixture flow parallel to a platinum flat plate system was designed to investigate the temperatures and OH distributions near the plate surface. Laser-Induced Predissociation Fluorescence (LIPF) technique was adopted to quantitatively analyze OH radical distributions. Gas-phase temperature profiles were measured by a K-type thermocouple with radiation correction. In conjunction with the experimental observations, a model to simulate the reacting flow over a thin flat plate was used to analyze the mechanism of the 2-D catalytic reactions.
    In this study, in order to focus on catalytic reactions and to avoid the occurrence of ignition in gas-phase combustion, the equivalence ratios at mixture flow velocities of 10cm/sec, 20cm/sec, and 30cm/sec were set to be 0.32, 0.28, and 0.26, respectively. The experimental observations showed that the maximum surface temperatures at different experimental conditions occurred at the leading edge of the plate. A universal calibration constant, CF = (1.076±0.174)×1016molecules/cc showed in the literature, was used to quantify the OH concentrations. The measured OH concentrations near the plate surface were about 5×1014molecules/cc and decreased as the distance away from the plate surface. However, the calculated near-surface OH concentrations with the Deutschmann mechanism which included the catalytic surface reactions only were approximated to 1012molecules/cc. The analysis showed that the two-phase reactions should be included in the catalytic reaction mechanism.
    Based on the “brute force” sensitivity analysis, HO2* and HO2 were the key species for OH production in the low-temperature catalytic reaction environment. By adjusting the sticking coefficients of the reactions OH+Pt*→OH* and OH+O*→HO2* in reacting flow simulations, near-surface OH could be significantly increased, and gas-phase OH depleted slower by increasing the rate constant of the reaction HO2+H→OH+OH or decreasing the rate constant of the reactionHO2+OH→H2O+O2. However, since the low-temperature kinetic data for those reactions are still unjustified, the validation of the results of this thesis research required further fundamental studies on chemical kinetics.

    ABSTRACT IN CHINESE…………………………………………………………i CHINESE CONCISE……………………………………………………………iii ABSTRACT………………………………………………………………………xii CONTENTS………………………………………………………………………xiv LIST OF TABLES……………………………………………………………xvii LIST OF FIGURES…………………………………………………………xviii NOMENCLATURE…………………………………………………………………xxi CHAPTER Ⅰ INTRODUCTION……………………………………………………1 1.1 Background…………………………………………………………………1 1.1.1 Reduction of Nitrogen Oxides……………………………………1 1.1.2 Micro-combustor………………………………………………………3 1.2 Fundamental Studies of Catalytic Combustion………………4 1.3 Laser Diagnostic Techniques………………………………………13 1.4 Laser-Induced Fluorescence………………………………………15 1.5 Motivations and Objects……………………………………………17 1.6 Thesis Overview…………………………………………………………18 CHAPTER Ⅱ THEORY OF LASER-INDUCED FLUORESCENCE AND NUMERICAL SIMULATION………………………………………………………19 2.1 Background of LIF………………………………………………………19 2.2 State-to-State Transfer Approach………………………………20 2.3 Four-Level Model………………………………………………………21 2.4 OH Concentration Measurements……………………………………26 2.5 Numerical Simulation…………………………………………………29 2.6 Chemical Reactions……………………………………………………31 2.6.1 Homogeneous Reactions……………………………………………32 2.6.2 Heterogeneous Reactions…………………………………………34 2.7 Thermodynamic and Transport Properties………………………39 2.8 Boundary Conditions…………………………………………………41 2.9 Numerical Methods and Computational Tools…………………42 2.10 Reaction Mechanisms…………………………………………………43 CHAPTER Ⅲ EXPERIMENTAL APPARATUS……………………………………45 3.1 System Components………………………………………………………45 3.2 Combustion Chamber and Temperature Measurement…………45 3.3 Laser System and Lenses……………………………………………48 3.4 Fluorescence Detection………………………………………………49 3.5 Operation Considerations……………………………………………51 3.6 Experimental Difficulties…………………………………………51 3.7 Chapter Summary…………………………………………………………53 CHAPTER Ⅳ RESULTS AND DISCUSSIONS…………………………………55 4.1 Overview……………………………………………………………………55 4.2 Reaction Mechanisms Test……………………………………………55 4.3 Temperature Measurements……………………………………………57 4.3.1 Temperature Correction……………………………………………57 4.3.2 Temperature Fitting………………………………………………60 4.4 OH Measurements and Model Simulation…………………………62 4.4.1 H2O Dissociation……………………………………………………62 4.4.2 OH Semi-quantification……………………………………………64 4.4.3 Model Simulation……………………………………………………66 4.5 Reactions Analysis……………………………………………………67 4.5.1 Sensitivity Analysis………………………………………………67 4.5.2 Heterogeneous Reactions Analysis……………………………68 4.5.3 Homogeneous Reactions Analysis………………………………70 CHAPTER Ⅴ CONCLUSIONS AND RECOMMENDATIONS………………………72 REFERENCES………………………………………………………………………75 TABLES……………………………………………………………………………90 FIGURES……………………………………………………………………………96 PUBLICATION LIST……………………………………………………………143 VITA………………………………………………………………………………144

    [1] Bowman, C. T., 1992, “Control of combustion-generated nitrogen oxide emissions ”, 24th Symposium (Int.) on Combustion / The Combustion Institute, pp.859-878.
    [2] Gupta, A. K. and Lilley, D. G., 1994, “Combustion and Environmental Challenges for Gas Turbines in the 1990's”, Journal of Propulsion and Power, 10, pp.137-147.
    [3] Zeldovich, J., 1946, “The Oxidation of Nitrogen Combustion and Explosions”, Acta Physiochem., URSS, 21, pp.577-628.
    [4] Fenimore, C. P., 1979, “Studies of Fuel-Nitrogen Species in Rich Flame. Gases”, 17th Symposium (Int.) on Combustion / The Combustion Institute, pp.661-670.
    [5] Cannon, S. M., Brewster, B. S., and Smoot, L. D., 1998, “Stochastic Modeling of CO and NO in Premixed Methane Combustion”, Combustion and Flame, 113, pp.135-146.
    [6] Brewster, B. S, Cannon, S. M., Farmer, J. R., and Meng, F., 1999, “Modeling of lean premixed combustion in stationary gas turbines”, Progress in Energy and Combustion Science, 25, pp.353–385.
    [7] Steele, R. C., Malie, P. C., Nicol, D. G., Kramlich, J. C., 1995, “NOx and N2O in lean-premixed jet-stirred flames”, Combustion and Flame, 100, pp.440-449.
    [8] Beebe, K. W., Cairns, K. D., Pareek, V. K., Nickolas, S. G., Schlatter, J. C., and Tsuchiya, T., 2000, “Development of catalytic combustion technology for single-digit emissions from industrial gas turbines”, Catalysis Today, 59, pp.95-115.
    [9] Cutrone, M. B., Beebe, K. W., Dalla Betta, R. A.; Schlatter, J. C. Nickolas, S. G., and Tsuchiya, T., 1999, “Development of a catalytic combustor for a heavy-duty utility gas turbine”, Catalysis Today, 47, pp. 391-398.
    [10] Kajita, S. and Dalla Betta, R. A., 2003, “Achieving ultra low emissions in a commercial 1.4 MW gas turbine utilizing catalytic combustion”, Catalysis Today, 83, p 279-288.
    [11] Correa, S. M., 1993, “Review of NOx formation under gas-turbine combustion conditions”, Combustion Science and Technology, 87, pp.329-362.
    [12] Carroni, R., Griffin, T., and Kelsall, G., 2004, “Cathlean: Catalytic, hybrid, lean-premixed burner for gas turbines”, Applied Thermal Engineering, 24, pp. 1665-1676.
    [13] Sze, S.M., ed., Semiconductor Sensors. John Wiley & Sons Inc., pp.97-530, 1994.
    [14] Fu, K., Knobloch, A. J., Cooley, B. A., Walther, D. C., Fernandez-Pello, C., Liepmann, D., and Miyaska, K., 2001, “Microscale combustion research for applications to MEMS rotary IC engine”, Proceedings of the National Heat Transfer Conference, 1 pp. 613-618.
    [15] Liedtke, O. and Schulz, A., 2003, “Development of a new lean burning combustor with fuel film evaporation for a micro gas turbine”, Experimental Thermal and Fluid Science 27, pp.363–369.
    [16] Waitz, I. A., Gauba, G., and Tzeng, Y.-S., 1998, “Combustors for micro-gas turbine engines”, Journal of Fluids Engineering, 120, pp. 109-117.
    [17] Ahn, J., Eastwood, C., Sitzki, L., and Ronney, P. D., 2005, “Gas-phase and catalytic combustion in heat-recirculating burners”, Proceedings of the Combustion Institute, 30, pp. 2463-2472.
    [18] Yang, W. M., Chou, S. K., Shu, C., Li, Z. W., and Xue, H., 2003, “Research on micro-thermophotovoltaic power generators”, Solar Energy Materials and Solar Cells, 80, pp.95-104.
    [19] Miesse, C. M., Masel, R. I.; Jensen, C. D.; Shannon, M. A., and Short, M., 2004, “Submillimeter -scale combustion”, AIChE Journal, 50, pp. 3206-3214.
    [20] Janicke, M. T., Kestenbaum, H., Hagendorf, U., Schüth, F., Fichtner, M., and Schuberty, K., 2000, “The Controlled Oxidation of Hydrogen from an Explosive Mixture of Gases Using a Microstructured Reactor/Heat Exchanger and Pt/Al2O3 Catalyst”, Journal of Catalysis, 191, pp.282–293.
    [21] Spadaccini, C. M., Zhang, X., Cadou, C. P., Miki, N., and Waitz, I. A., 2003, “Preliminary development of a hydrocarbon-fueled catalytic micro-combustor”, Sensors and Actuators A, 103, pp.219–224.
    [22] Sadamori, H., 1999, “Application concepts and evaluation of small-scale catalytic combustors for natural gas”, Catalysis Today, 47, pp.325-338.
    [23] Tsujikawa, Y., Fujii, S., Sadamori, H., Ito, S., and Katsura, S., 1995, “Numerical simulation of the two-dimensional flow in high pressure catalytic combustor for gas turbine”, Catalysis Today, 26, pp.267-274.
    [24] Quick, L.M. and Kamitomai, S., 1995, “Catalytic combustion reactor design and test results”, Catalysis Today, 26, pp.303-308.
    [25] Arai, H. and Fukuzawa, H., 1995, “Research and development on high temperature catalytic combustion”, Catalysis Today, 26, pp. 217-221.
    [26] Thevenin, P. O., Ersson, A. G., Kusar, H. M. J., Menon, P. G., and Jaras, S. G., 2001, “Deactivation of high temperature combustion catalysts”, Applied Catalysis A: General, 212, pp.189-197.
    [27] Hayes, R. E. and Kolaczkowski, S. T., Introduction to Catalytic Combustion, Gordon & Breach Publishing Group, pp.1-17, 1997.
    [28] Masel, R. I., Principles of Adsorption and Reaction on Solid Surface, John Wiley & Sons, pp.444-448 & pp.618-634, 1996.
    [29] Lai, Y. H., Reacting Flow Modeling on the Study of Hydrogen-Oxygen-Platinum Catalytic Combustion, Ph. D. Thesis, National Cheng Kung University, Taiwan, 2007.
    [30] Pfefferle, L. D. and Pfefferle, W. C., 1987, “Catalysis in Combustion”, Catalysis Reviews - Science and Engineering, 29, pp. 219-267.
    [31] Park, Y. K., Bui, P.-A., and Vlachos, D. G., 1998, “Operation regimes in catalytic combustion: H2/air mixtures near Pt”, AIChE Journal, 44, pp.2035-2043.
    [32] Fassihi M., Zhdanov V. P., Rinnemo M., Keck, K.-E., and Kasemo, B., 1993, “A Theoretical and Experimental-Study of Catalytic Ignition in the Hydrogen Oxygen Reaction On Platinum”, Journal of Catalysis, 141, pp.438-452.
    [33] Rader, C. G. and Weller, S. W., 1974, “Ignition on catalytic wires: kinetic parameter determination by the heated-wire technique”, AIChE Journal, 20, pp.515-522.
    [34] Schwartz A., Holbrook L. L., and Wise, H., 1971, “Catalytic oxidation studies with platinum and palladium”, Journal of Catalysis, 21, pp.199-207.
    [35] Bui, P.-A., Vlachos, D. G., and Westmoreland, P. R., 1997, “Catalytic ignition of methane/oxygen mixtures over platinum surfaces: Comparison of detailed simulations and experiments”, Surface Science, 385, pp.L1029-L1034.
    [36] Cho, P. and Law, C. K., 1986, “Catalytic ignition of fuel/oxygen/nitrogen mixtures over platinum”, Combustion and Flame, 66, pp.159-170.
    [37] Deutschmann, O., Schmidt, R., and Behrendt, F., 1997, “Interaction of Transport and Chemical Kinetics in Catalytic Combustion of H2/O2Mixtures on Pt”, Proceedings of The 8th International Symposium on Transport Phenomena in Combustion (San Francisco), S. 166-175, Taylor & Francis, Washington, DC, ISBN 1-56032-456-2.
    [38] Rinnemo, M., Deutschmann, O. Behrendt, F., and Kasemo, B., 1997, “Experimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinum”, Combustion and Flame, 111, pp.312-326.
    [39] Veser, G., Ziauddin, M., and Schmidt L. D., 1999, “Ignition in alkane oxidation on noble-metal catalysts”, Catalysis Today, 47, pp.219-228.
    [40] Bui, P.-A., Vlachos, D. G., and Westmoreland, P. R., 1996, “Catalytic ignition of methane/oxygen mixtures over platinum surfaces: Comparison of detailed simulations and experiments”, 26th Symposium (Int.) on Combustion / The Combustion Institute, pp.1763-1770.
    [41] Dogwiler, U., Mantzaras, J., Benz, P., Kaeppeli, B., Bombach, R., and Arnold, A., 1998, “Homogeneous ignition of methane-air mixtures over platinum: Comparison of measurements and detailed numerical predictions”, 27th Symposium (Int.) on Combustion / The Combustion Institute, pp.2275-2282.
    [42] Griffin, T. A. and Pfefferle, L. D., 1990, “Gas phase and catalytic ignition of methane and ethane in air over platinum”, AIChE Journal, 36, pp.861-870.
    [43] Cattolica, R. J. and Schefer, R. W., 1983, “Laser Fluorescence Measurements of the OH Concentration in a Combustion Boundary Layer,” Combustion Science and Technology, 30, pp.205-212.
    [44] Schefer, R. W., Robben, F., and Cheng, R. K., 1980, “Catalyzed combustion of H2/air mixtures in a flat-plate boundary layer: I. Experimental results”, Combustion and Flame, 38, pp.51-63.
    [45] Schefer, R. W., 1982, “Catalyzed combustion of H2/air mixtures in a flat-plate boundary layer: II. Numerical models”, Combustion and Flame, 45, pp.171-190.
    [46] Griffin, T. A., Pfefferle, L. D., Dyer, M. J., and Crosley, D. R., 1989, “The Ignition of Methane/Ethane Boundary Layer Flows by Heated Catalytic surface”, Combustion Science and Technology, 65, pp.19-37.
    [47] Pfefferle, L. D., Griffin, T. A., Winter, M., Crosley, D. R., and Dyer, M. J., 1989, “The Influence of catalytic activity on the ignition of boundary layer flows Part I: Hydroxyl radical measurements”, Combustion and Flame, 76, pp.325-338.
    [48] Pfefferle, L. D., Griffin, T. A., Dyer, M. J., and Crosley, D. R., 1989, “The Influence of catalytic activity on the ignition of boundary layer flows Part II: Oxygen atom measurements”, Combustion and Flame, 76, pp.339-349.
    [49] Ikeda, H., Sato, J., and Williams, F. A., 1995, “Surface kinetics for catalytic combustion of hydrogen-air mixtures on platinum at atmospheric pressure in stagnation flows”, Surface Science, 326, pp.11-26.
    [50] Khadiya, N. and Glumac, N. G., 2000, “Validation of surface chemistry models using low pressure stagnation-point flames: Measurements of OH above platinum surfaces”, Combustion Science and Technology, 159, pp.147-167.
    [51] Williams, W. R., Stenzel, M. T., Song, X., and Schmidt, L. D., 1991, “Bifurcation behavior in homogeneous-heterogeneous combustion. I. Experimental results over platinum”, Combustion and Flame, 84, pp.277-291.
    [52] Appel, C., Mantzaras, J., Schaeren, R.; Bombach, R., Inauen, A., Kaeppeli, B., Hemmerling, B., and Stampanoni, A., 2002, “An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum”, Combustion and Flame, 128, pp.340-368.
    [53] Fridell, E., Elg, A.-P., Rosen, A., and Kasemo, B., 1995, “Laser-induced fluorescence study of OH desorption from Pt(111) during oxidation of hydrogen in O2 and decomposition of water”, Journal of Chemical Physics, 102, pp.5827-5835.
    [54] Gudmundson, F., Persson, J. L.; Forsth, M., Behrendt, F., Kasemo, B., and Rosen, A., 1998, “OH gas phase chemistry outside a Pt catalyst”, Journal of Catalysis, 179, pp.420-430.
    [55] Appel, C., Mantzaras, J., Schaeren, R., Bombach, R., Inauen, A., Tylli, N., Wolf, M., Griffin, T., Winkler, D., and Carroni, R., 2004, “Partial catalytic oxidation of methane to synthesis gas over rhodium: in situ Raman experiments and detailed simulations”, Proceedings of the Combustion Institute, 30, pp.2509-2517.
    [56] Reinke, M., Mantzaras, J. Bbach, R., Schenker, S., and Inauen, A., 2005, “Gas phase chemistry in catalytic combustion of methane/air mixtures over platinum at pressures of 1 to 16 bar” Combustion and Flame, 141, pp.448-468.
    [57] Eisert, F., Elg, A. P., and Rosen, A., 1995, “Adsorption of oxygen and hydrogen on Pt(111) studied with second-harmonic generation”, Applied Physics A: Materials Science & Processing, 60, pp.209-215.
    [58] Härle, H., Lehnert, A., Metka, U., Volpp, H.-R., Willms, L., and Wolfrum, J., 1999, “In situ detection and surface coverage measurements of CO during. CO oxidation on polycrystalline platinum using sum frequency generation”, Applied Physics B, 68, pp.567-572.
    [59] Somorjai, G. A., 1997, “New model catalysts (platinum nanoparticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions”, Applied Surface Science, 121-122, pp.1-19.
    [60] Markatou, P., Pfefferle, L. D., and Smooke, M. D. 1993, “A Computational Study of Methane-Air over Heated Catalytic and Non-Catalytic Surfaces”, Combustion and Flame, 93, pp.185-201.
    [61] Papadias, D., Zwinkels, M.F.M., Edsberg, L., and Björnbom, P., 1999, “Modeling of high-temperature catalytic combustors: Comparison between theory and experimental data”, Catalysis Today, 47, pp.315-319.
    [62] Bui, P.-A., Wilder, E. A., Vlachos, D. G., and Westmoreland, P. R. 1997, “Hierarchical reduced models for catalytic combustion: H2/air mixtures near platinum surfaces”, Combustion Science and Technology, 129, pp.243-275.
    [63] Marinov, N., Westbrook, C. K., and Pitz, W. J., 1996, “Detailed and Global Chemical Kinetics Model for Hydrogen”, Transport Phenomena in Combustion, edited by S. H. Chan, Talyor and Francis, Washington,DC.
    [64] Miller, J. A. and Bowman, C. T., Prog. Ener. Combust. Sci., 15, pp.287–338, 1989.
    [65] Pendry, J. B., 1993, “LEED and the crystallography of surfaces”, Surface Science Report, 19, pp. 87-97.
    [66] Samson, P., Nesbitt, A., Koel, B. E., and Hodgsona, A., 1998, “Deuterium dissociation on ordered Sn/Pt(111) surface alloys”, Journal of Chemical Physics, 109, pp.3255-3264.
    [67] Bradley, J. M., Hopkinson, A., and King, D. A., 1997, “Molecular beam study of ammonia adsorption on Pt{100}”, Surface Science, 371, pp.255-263.
    [68] Luntz, A. C., Brown, J. K., and Williams, M. D., 1990, “Molecular beam studies of H2 and D2 dissociative chemisorption on Pt(111)”, Journal of Chemical Physics, 93, pp.5240-5246.
    [69] Walker, A. V. and King, D. A., 2000, “A molecular-beam study of methane dissociative adsorption on oxygen-precovered Pt{110}(1×2)”, Surface Science, 444, pp.1-6.
    [70] Sachs, C., Hildebrand, M., Völkening, S., Wintterlin, J., and Ertl, G., 2002, “Reaction fronts in the oxidation of hydrogen on Pt(111): Scanning tunneling microscopy experiments and reaction–diffusion modeling”, Journal of Chemical Physics, 116, pp.5759-5773.
    [71] Tsong, T. T., 2001, “Mechanisms of Surface Diffusion” Progress in Surface Science, 67, pp.235-248.
    [72] Thomas, V. D., Schwank, J. W., and Gland, J. L., 2002, “Hydrogen desorption from polycrystalline platinum chemically modified by sulfur pre-coverage”, Surface Science, 501, pp.214–234.
    [73] Wang, H., Biesecker, J. P., Iedema, M. J., Ellison, G. B., and Cowin, J. P., 1997, “Low-energy deposition and collision-induced dissociation of water ions on Pt(111)”, Surface Science, 381, pp. 142-156.
    [74] Shustorovich, E., 1990, “The bond-order conservation approach to chemisorption and heterogeneous catalysis: applications and implications”, Advances in Catalysis, 37, pp. 101-163.
    [75] Sellers, H., 2003, “The generalized UBI-QEP method for modeling the energetics of reactions on transition metal surfaces”, Surface Science, 524, pp.29–39.
    [76] Shustorovich, E. and Sellers, H., 1998, “UBI-QEP method: A practical theoretical approach to understanding chemistry on transition metal surfaces”, Surface Science Report, 31, pp. 1-119.
    [77] Aghalayam, P., Park, Y. K., and Vlachos, D. G., 2000, “Construction and optimization of complex surface-reaction mechanisms”, AIChE Journal, 46, pp.2017-2029.
    [78] Park, Y. K., Aghalayam, P., and Vlachos, D. G., 1999, “A generalized approach for predicting coverage-dependent reaction parameters of complex surface reactions: Application to H-2 oxidation over platinum”, Journal of Physical Chemistry A, 103, pp.8101-8107.
    [79] Pfefferle, W. C. and Pfefferle, L. D., 1986, “Catalytically Stabilized Combustion”, Progress in Energy and Combustion Science, 12, pp.25-41.
    [80] Williams, W. R., Marks, C. M., and Schmidt, L. D., 1992, “Steps in the reaction H2 + O2 <=> H2O on Pt. OH desorption at high temperatures”, Journal of Physical Chemistry, 96, pp.5922-5831.
    [81] Vlachos, D. G. and Bui, P.-A., 1996, “Catalytic ignition and extinction of hydrogen: comparison of simulations and experiments”, Surface Science, 364, pp.L625-L630.
    [82] Fernandes, N. E., Park, Y. K., and Vlachos, D. G., 1999, “The Autothermal Behavior of Platinum Catalyzed Hydrogen Oxidation: Experiments and Modeling”, Combustion and Flame, 118, pp.164-178.
    [83] Hellsing, B., Kasemo, B. and Zhdanov, V. P., 1991, “Kinetics of the Hydrogen-Oxygen Reaction on Platinum”, Journal of Catalysis, 132, pp.210-228.
    [84] Warnatz, J., Allendorf, M. D., Kee, R. J., and Coltrin, M. E., 1994, “Model of elementary chemistry and fluid mechanics in the combustion of hydrogen on platinum surfaces”, Combustion and Flame, 96, pp.393-406.
    [85] Ljunström, S., Kasemo, B., Rosén, A., Wahnström, T., and Fridell, E., 1989, “An experimental study of the kinetics of OH and H2O formation on Pt in the H2 + O2 reaction”, Surface science, 216, pp.63-92.
    [86] Försth, M., Gudmundson, F., Persson, J. L., and Rosen, A., 1999, “Influence of a catalytic surface on the gas-phase combustion of H2 + O2”, Combustion and Flame, 119, pp. 144-153.
    [87] Försth, M., 2002, “Sensitivity analysis of the reaction mechanism for gas-phase chemistry of H2+O2 mixtures induced by a hot Pt surface”, Combustion and Flame, 130, pp.241-260.
    [88] Bui, P.-A., Vlachos, D. G., and Westmoreland, P. R., 1997, “Modeling ignition of catalytic reactors with detailed surface kinetics and transport: Oxidation of H2/air mixtures over platinum surfaces”, Industrial & Engineering Chemistry Research, 36, pp.2558-2567.
    [89] Gudmundson, F., Fridell, E., Rosén, A., and Kasemo, B., 1993, “valuation of OH Desorption Rates from Pt Using Spatially Resolved Imaging of Laser-Induced Fluorescence”, Journal of Physical Chemistry, 97, pp.12828-12834.
    [90] Fridell, E. and Rosén, A., 1994, “A laser-induced fluorescence study of OH desorption from Pt in H2O/O2 and H2O/H2 mixtures”, Langmuir, 10, pp.699-708.
    [91] Biener, J., Lang, E., Lutterloh, C, and Küppers, J., 2002, “Reactions of gas-phase H atoms with atomically and molecularly adsorbed oxygen on Pt(111)”, Journal of Chemical Physics, 116, pp.3063-3074.
    [92] Capitano, A. T., Gabelnick, A. M., and Gland, J. L., 1999, “Gas phase atomic hydrogen reacting with molecular and atomic oxygen to form water on the Pt (111) surface”, Surface Science, 419, pp.104-113.
    [93] Daily, J. W., 1976, “Pulsed Resonance Spectroscopy Applied to Turbulent Combustion Flows,” Applied Optics, 15, No.4, pp.955–960.
    [94] Daily, J. W., 1977, “Saturated Effects in Laser Induced Fluorescence Spectroscopy,” Applied Optics, 16, No.3, pp.568–571.
    [95] Daily, J. W., 1977, “Use of Rate Equations to Describe Laser Excitation in Flames,” Applied Optics, 16, No.8, pp.2322–2327.
    [96] Bechtel, J. H. and Teets, R. E., 1979, “Hydroxyl and its Concentration Profile in Methane-Air Flames,” Applied Optics, 18, No.24, pp.4138–4144.
    [97] Crosley, D. R. and Smith, G. P., 1982, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame, 44, pp.27–34.
    [98] Lucht, R. P., Sweeney, D. W. and Laurendeau, N. M., 1983, “Laser-Saturated Fluorescence Measurements of OH Concentration in Flames,” Combust. Flame, 50, pp.189–205.
    [99] Lucht, R. P., Sweeney, D. W. and Laurendeau, N. M., 1985, “Laser-Saturated Fluorescence Measurements of OH in Atmospheric Pressure CH4/O2/N2 Flames Under Sooting and Non-Sooting Conditions,” Combust. Sci. and Tech., 2, pp.259–281.
    [100] Lucht, R. P., Sweeney, D. W. and Laurendeau, N. M., 1986, “Time-Resolved Fluorescence investigation of Rotational Transfer in A2Σ+ ( = 0) OH,” Applied Optics, 25, No.22, pp.4086–4095.
    [101] Laurendeau, N. M. and Goldsmith, J. E. M., 1989, “Comparison of Hydroxyl Concentration Profiles using Five Laser-Induced Fluorescence Methods in a Lean Subatmospheric-Pressure H2/O2/Ar Flame,” Combust. Sci. and Tech., 63, pp.139–152.
    [102] Kohse-Höinghaus, K., Heidenreich, R and Just, T., 1984, “Determination of Absolute OH and CH Concentrations in a Low Pressure Flame by Laser-Induced Saturated Fluorescence,” 20th Symposium (Int.) on Combustion, The Combustion Institute, pp.1177–1185.
    [103] Kohse-Höinghaus, K., 1994, “Laser Techniques for the Quantitative Detection of Reactive Intermediates in Combustion Systems,” Prog. Energy Combust. Sci., 20, pp.203–279.
    [104] Andresen, P., Bath, A., Gröger, W., Lülf, H. W., Meijer, G. and ter Meulen, J. J., 1988, “Laser-Induced Fluorescence with Tunable Excimer Lasers as a Possible Method for instantaneous Temperature Field Measurements at High Pressures: Checks with an Atmospheric Flame,” Applied Optics, 27, No.2, pp.365–378.
    [105] Andresen, P., Meijer, G., Schlüter, H., Voges, H., Koch, A., Hentschel, W., Oppermann, W. and Rothe, E., 1990, “Fluorescence Imaging inside an Internal Combustion Engine using Tunable Excimer Lasers,” Applied Optics, 29, No.16, pp.2392–2404.
    [106] Cheng, T. S., Wehrmeyer, J. A. and Pitz, R. W., 1991, “Simultaneous Temperature and Multi-Species Measurement in a Lifted Hydrogen Diffusion Flame by a KrF Excimer Laser,” AIAA Paper, No.91–0181.
    [107] Cheng, T. S., Wehrmeyer, J. A. and Pitz, R. W., 1992, “Simultaneous Temperature and Multispecies Measurement in a Lifted Hydrogen Diffusion Flame,” Combust. Flame, 91, pp.323–345.
    [108] Cheng, T. S., Yuan, T., Chao, Y. C., Lu, C. C. and Wu, D. C., 1998, “Premixed Methane-Air Flame Spectra Measurements Using UV Raman Scattering,” Combust. Sci. and Tech., 135, pp.65–84.
    [109] Cattolica, R. J., 1981, “OH Rotational Temperature from Two-Line Laser-Excited Fluorescence,” Applied Optics, 20, No.7, pp.1156–1166.
    [110] Carter, C. D., King, G. B. and Laurendeau, N. M., 1991, “Quenching-Corrected Saturated Fluorescence Measurements of the Hydroxyl Radical in Laminar High-Pressure C2H6/O2/N2 Flames,” Combust. Sci. and Tech., 78, pp.247–264.
    [111] Crosley, D. R., 1989, “Semiquantitative Laser-Induced Fluorescence in Flames,” Combust. Flame, 78, pp.153–167.
    [112] Crosley, D. R., 1989, “Rotational and Translational Effects in Collisions of Electronically Excited Diatomic Hydrides,” J. Phys. Chem., 93, pp.6273–6282.
    [113] Chang, C. M., Quantitative Measurement of OH Concentration with Laser-Induced Predissociative Fluorescence in High-Pressure Propane Flames, Ph. D. Thesis, National Cheng Kung University, Taiwan, 2006.
    [114] Andresen, P., Schlüter, H., Wollf, D., Voges, H., Koch, A., Hentschel, W., Oppermann, W. and Rothe, E., 1992, “Identification and Imaging of OH (=0) and O2 (=6 or 7) in an Automobile Spark-Ignition Engine Using a Tunable KrF Excimer Laser,” Applied Optics, 31, No.36, pp.7684–7689.
    [115] Kaiser, E. W., Westbrook, C. K. and Pitz, W. J., 1986, “Acetaldehyde oxidation in the negative temperature coefficient regime: Experimental and modeling results,” Int. J. Chem. Klnet., 18, pp.655-688.
    [116] Laurendeau, N. M., 1988, “Temperature Measurements by Light-Scattering Methods,” Prog. Energy Combust. Sci., 14, pp.147–170.
    [117] Kohse-Höinghaus, K., Jeffries, J. B., Copeland, R. A., Smith, G. P. and Crosley, D. R., 1988, “The Quantitative LIF Determination of OH Concentrations in Low-Pressure Flames,” 22th Symposium (Int.) on Combustion, The Combustion Institute, pp.1857–1866.
    [118] Hanson, R. K., Combustion Diagnostics: Planar Imaging Techniques, Twenty-First Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp.1677-1691, 1986.
    [119] Banwell, C. N, Fundamentals of Molecular Spectroscopy, 3rd Edition, McGraw-Hill, London, 1983.
    [120] Eckbreth, A. C., 1996, Laser Diagnostics for Combustion Temperature and Species, 2nd Edition, Gordon and Breach Science Publishers SA.
    [121] Cheng, C. K., A Study of Quantitative NO LIF in High-Pressure Methane Flames, Ph. D. Thesis, National Cheng Kung University, Taiwan, 1998.
    [122] Lucht, R. P., Sweeney, W., and Laurendeau, N. M., 1980, “Balanced Cross-Rate Model for Saturated Molecular Fluorescence in Flames Using a Nanosecond Pulse Length Laser,” Appl. Opt., 19, pp.3295–3300.
    [123] Stepowski, D. and Cottereau, M. J., 1981, “Time Resolved Study of Rotational Energy Transfer in A2Σ+ ( = 0) State of OH in a Flame by Laser Induced Fluorescence,” J. Chem. Phys., 74, No.12, pp.6674–6679.
    [124] Bergano, N. S., Jaanimagi, P. A., and Salour, M. M., 1983, “Picosecond Laser-Spectroscopy Measurement of Hydroxyl Fluorescence Lifetime in Flames,” Optics Letters, 8, No.8, pp443-445.
    [125] Schwarzwald, R., Monkhouse, P., Wolfrum, J., 1987, “Picosecond Fluorescence Lifetime Measurement of The OH Radical in an Atmospheric Pressure Flame,” Chem. Phys. Lett., 142, Iss.1-2, pp.15-18.
    [126] Köllner, M., Monkhouse, P., and Wolfrum, J., 1990, “Time-Resolved LIF of OH (A2Σ+, ´=1 and ´=0) in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett., 168, pp.355-360.
    [127] Reisel, J. R. and Laurendeau, N. M., 1994, “Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide Formation in High-Pressure Flames,” Combust. Sci. and Tech., 98, pp.137–160.
    [128] Seitzman, J. M., Quantitative Applications of Fluorescence Imaging in Combustion, Ph. D. Thesis, Stanford University, 1991.
    [129] Lu, C. C., Quantitative Analysis of OH-LIPF in High-Pressure Methane Flames, Ph. D. Thesis, National Cheng Kung University, Taiwan, 2002.
    [130] Yuan, T., Lai, Y. H., Lu, C. C., Chang, C. M., 2008, “An Universal Calibration of Quantitative OH-LIPF Measurements in Hydrocarbon Flames at Elevated Pressures,” 6th International Seminar on Flame Structure.
    [131] Zellner, R. 1984, “Bimolecular Reaction rate Coefficients”, Combustion Chemistry, W. C. Gardiner Jr., Ed., Springer, New York, pp.127-172.
    [132] Gardiner Jr, W. C. and Troe, J., 1984, “Rate Coefficients of Thermal Dissociation, Isomerization, and Recombination Reaction”, Combustion Chemistry, W. C. Gardiner Jr., Ed., Springer, New York, pp.173-196.
    [133] Zhdanov, V. P., 1986, “Some Aspects of the Kinetics of the Hydrogen-Oxygen Reaction over the. Pt(111) Surface”, Surface Science, 169, pp.1–13.
    [134] Motz, H. and Wise, H., 1960, “Diffusion and Heterogeneous Reaction III: Atom Recombination at a Catalytic Boundary”, Journal of Chemical Physics, 32, pp.1893-1894.
    [135] Coltrin, M. E., Kee, R. J., and Rupley, F. M., 1990, “SURFACE CHEMKIN: A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface-Gas-Phase Interface”, Sandia National Laboratories Report, SAND90-8003B.
    [136] Coltrin, M. E., Kee, R. J., and Rupley, F. M., 1991, “Surface CHEMKIN: A general formalism and software for analyzing heterogeneous chemical kinetics at a gas-surface interface”, International Journal of Chemical Kinetics, 23, pp.1111-1128.
    [137] Burcat, A., 1984, “Thermochemical data for combustion calculations”, Combustion Chemistry, W. C. Gardiner Jr., Ed., Springer, New York, pp.455-486.
    [138] Kee, R. J., Rupley, F. M., and Miller, J. A., 1987, “The Chemkin Thermodynamic Database”, Sandia National Laboratories Report, SAND87-8215.
    [139] Li, J., Zhao, Z., Kazakov, A., and Dryer, F. L., 2004, “An Updated Comprehensive Kinetics Model of H2 Combustion”, International Journal of Chemical Kinetics, 36, pp.1-10.
    [140] Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., and Miller, J. A., 1986, “A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties”, Sandia National Laboratories Report, SAND86-8246.
    [141] Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena. John Wiley & Sons, Inc., New York, pp.23-25 & 554-580,1960.
    [142] Dixon-Lewis, G., 1968, “Flame structure and flame reaction kinetics”, Proceedings of the Royal Society A, 307, pp.111–135.
    [143] Reid, R. C., Prausnitz, J. M., and Poling, B. E., The properties of gases and liquids. 4th edition, McGraw-Hill Book Company, pp.388-626, 1987.
    [144] Patankar. S. V., Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York, pp.41-135, 1980.
    [145] Grcar, J. F., 1992, “The Twopnt Program for Boundary Value Problems”, Sandia National Laboratories Report, SAND91-8230.
    [146] Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, Jr., W. C., Lissianski, V. V., and Qin, Z., http://www.me.berkeley.edu/gri_mech/
    [147] Ruscic, B., Wagner, A. F., Harding, L. B., Asher, R. L., Feller, D., Dixon, D. A., Peterson, K. A., Song, Y., Qian, X., Ng, C., Liu, J., Chen, W., and Schwenke, D. W., 2002, “On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl”, Journal of Physical Chemistry A, 106, pp.2727-2747.
    [148] Herbon, J. T., Hanson, R. K., Golden, D. M., and Bowman, C. T., 2002, “A Shock Tube Study the Enthalpy Formation of OH”, 29th Symposium (Int.) on Combustion / The Combustion Institute, pp.1201-1208.
    [149] Mueller, M. A, Kim, T. J., Yetter, R.A., and Dryer, F.L., 1999, “Flow reactor studies and kinetic modeling of the H2/O2 reaction”, International Journal of Chemical Kinetics, 31, pp.113-125.
    [150] Deutschmann, O., Schmidt, R., Behrendt, F., and Warnatz, J., 1996, “Numerical modeling of catalytic ignition”, 26th Symposium (Int.) on Combustion / The Combustion Institute, 1, pp.1747-1754.
    [151] Gray, J. A. and Farrow, R. L., 1991, “Predissociation Lifetimes of OH A2Σ+ (=3) Obtained from Optical-Optical Double-Resonance Linewidth Measurements,” J. Chem. Phys., 95, No.10, pp.7054–7060.
    [152] Nguyen, Q. V. and Paul, P. H., 2001, “Photochemical Effects of KrF Excimer Excitation in Laser-Induced Fluorescence Measurements of OH in Combustion Environments,” Applied Physics B, 72, pp.497–505.
    [153] Burton, K. A., Ladouceur, H. D., and Fleming, J. W., 1992, “An Improved Noncatalytic Coating for Thermocouples”, Combustion Science and Technology, 81, pp. 141-145.
    [154] Whitaker, S., 1972, “Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles”, AlChE Journal, Vol. 18, pp. 361-371.
    [155] Baehr, H. D. and Stephan, K., 1996, Heat and Mass Transfer, 2nd Edit, Springer, p.575
    [156] Lee, J. F., Sears, F. W., and Turcotte, D. L., 1973, Statistical Thermodynamics, 2nd Edition, Addison-Wesley Publishing Company, pp.185-186.
    [157] Herzberg, G., Spectra of Diatomic Molecules, Vol.I, Van Nostrand, New York, 1950.
    [158] JANAF, Thermochemical Tables, National Standards Reference Data Series, Report No.NSRDS-NBS 37: also Dow Chemical Company, distributed by Clearinghouse for Federal Scientific and Technical Information, PB168370 and subsequent updates, 1965.
    [159] Lucht, R. P., Peterson, R. C. and Laurendeau, N. M., Report, No.PURDU-CL-78–06, 1978.
    [160] Luque, J. and Crosley, D. R., LIFBASE: Database and Spectral Simulation Program, SRI International, 1998.
    [161] Heard, D. E., Crosley, D. R., Jeffries, J. B., Smith, G. P. and Hirano, A., 1992a, “Rotational Level Dependence of Predissociation in the =3 Level of OH A2Σ+,” J. Chem. Phys., 96, No.6, pp.4366–4371.
    [162] Franklach, A., 1984, Combustion Chemistry, W. C. Gardiner Jr., Ed., Springer, New York, pp.439-444.
    [163] Allen, M. T., Yetter, R. A., and Dryer, F. L., “The decomposition of nitrous oxide at 1.5 P 10.5 atm and 1103 T 1173 K”, International Journal of Chemical Kinetics, 27, pp.883-909, 1995.
    [164] Lindstedt, R. P., Lockwood , F. C., and Selim, M. A., 1994, “Detailed Kinetic Modelling of Chemistry and Temperature Effects on Ammonia Oxidation”, Combustion Science and Technology, 99, pp.253-276.
    [165] Baulch, D. L., and Warnatz, J., 1994, “Summary Table of Evaluated Kinetic Data for Combustion Modeling: Supplement 1”, Combustion and Flame, 98, pp.59-79.
    [166] He, Y., Liu, X. and Lin, M. C., 1993, “Thermal Reaction of HNCO with NO2 at Moderate Temperatures”, International Journal of Chemical Kinetics, 25, pp.845-863.
    [167] Hochgreb, S., and Dryer, F. L., 1992, “A Comprehensive Study on CH2O Oxidation Kinetics”, Combustion and Flame, 91, pp.257-284.
    [168] Glargborg, P., Kristensen, P. G., Jensen, H., and Kin, D. J., 1994, “A Flow Reactor Study of HNCO Oxidation Chemistry”, Combustion and Flame, 98, pp.241-258.
    [169] Goyal, G., Paul, P. J., and Mukunda, H. S., 1992, “Computational Studies on One-Dimensional Laminar, Premixed Hydrogen-Nitric Oxide Flames”, Combustion and Flame, 88, pp.28-36.
    [170] Glarborg, P., Lilleheie, N. I., Kilpinen, P., and Hupa, M., 1992, “A Reduced Mechanism for Nitrogen Chemistry in Methane Combustion”, Twenty-Fourth Symposium (International) on Combustion, pp.889-898.
    [171] Wooldridge, S. T., Hanson, R. K., and Bowman, C. T., 1995, “Simultaneous Laser Absorption Measurements of CN and OH in a Shock Tube Study of HCN + OH → Products”, International Journal of Chemical Kinetics, 27, pp.1075-1087.
    [172] Glarborg, P., Kin, D. J., Miller, J. A., Kee, R. J., and Coltrin, M. E., 1994, “Modeling the Thermal DENOx Process in Flow Reactors. Surface Effects and Nitrous Oxide Formation”, International Journal of Chemical Kinetics, 26, pp.421-436.

    下載圖示
    2011-07-01公開
    QR CODE