簡易檢索 / 詳目顯示

研究生: 柯柔安
Ko, Jou-An
論文名稱: 開發和探討針對半乳糖凝集素-1四聚體的去氧核糖核酸適體來增強對肺癌治療
Develop and analyze a tetrameric DNA aptamer to enhance lung cancer therapy via targeting Galectin 1
指導教授: 陳玉玲
Chen, Yuh-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 68
中文關鍵詞: 肺癌適體多價適體
外文關鍵詞: Lung cancer, Aptamer, Multivalent Aptamer
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺癌是全球癌症死亡的主要原因。半乳糖凝集素 1(Gal-1) 是一種多效同型二聚體 β-半乳糖苷結合蛋白,具有單個碳水化合物識別域,Gal-1在腫瘤過量表達並促進腫瘤細胞的功能,也能結合T細胞導致T細胞凋亡而使腫瘤細胞能夠逃避免疫攻擊,導致肺癌患者預後不良。適體是經由化學合成的單鏈DNA或RNA,對目標具有高親和力和專一性,對化學修飾具有良好的耐受性,可是適體容易透過腎臟代謝出體外。為了彌補單價適體的缺陷,多價適體被提出來,它們由相同或不同的適體經過或未經修飾組裝而成,與單體適體相比具有更好的功能。實驗室先前研究開發了一種新型適體名為AP-74 M-545,同時表現出對Gal-1的高親和力和抑制肺腫瘤的生長。本研究的目標是設計出可以針對 Gal-1 的四聚體適體 (AP-74 M-545@4),並闡明它在阻斷 galectin-1 功能方面比單體 AP-74 M-545 更有效。 AP-74 M-545@4 由通過鹼基配對連接四個AP-74M545-linker到Scaffold所組成。首先,我們通過預先重新折疊 Ap-74M545-linker ,隨後添加Scaffold來合成 AP-74 M-545@4,然後將兩種材料在冷房中在搖床上共孵育過夜。透過10%丙烯酰胺電泳對產物進行驗證。我們發現凝膠上看不到Scaffold DNA,並且在約300 bp處形成清晰的條帶,表明AP-74 M-545@4已成功合成。 此外,AP-74 M-545@4 在 37℃ 孵育 24 小時後仍保持穩定。接下來,我們通過血液凝集試驗比較了 AP-74 M-545、AP-74 M-545-linker 和 AP-74 M-545@4 對 CS-Gal-1 的抑制能力。 結果表明,這兩種材料均不會抑制血液凝集。為了研究上述材料對癌細胞活性的影響,我們對兩種肺癌細胞系CL1-0和CL1-5進行了傷口癒合的細胞爬行實驗。數據表明有時AP-74 M-545@4能抑制CL1-0和CL1-5的遷移。此外,加入AP-74 M-545@4後能夠讓CL1-0和CL1-5傾向上皮特性。綜上所述,我們的研究表明 AP-74 M545@4 可能是治療肺癌的潛在治療劑。

    Lung cancer is the leading cause of cancer deaths globally. Galectin 1 (Gal-1), a pleotropic homodimeric beta-galactoside binding protein with a single carbohydrate recognition domain. Gal-1 is overexpressed in lung cancer and promotes the function of cancer cells. Gal-1 can also bind T cells to cause T cell apoptosis, so that tumor cells can escape immune attack, resulting in poor prognosis of lung cancer patients. Aptamers are chemically synthesized single stranded DNA or RNA with high affinity and specificity to the targets and good tolerant to chemical modification but are easily lost through renal excretion. Multivalent aptamer is assembled by identical or different aptamers with or without modification and possess better function in comparison to monomeric aptamer. Our previous study developed a novel aptamer, AP-74 M-545, demonstrating high affinity to Gal-1 and inhibition of lung tumor growth. Our aim in this study is to design a Gal-1 specific tetrameric aptamer (AP-74 M-545@4) and to clarify that it is more potent than monomeric AP-74 M-545 in blocking gal-1 function. The AP-74 M-545@4 is composed of a scaffold connected to four AP-74M545-linker through base pairing. First, we synthesized the AP-74 M-545@4 by refolding the Ap-74M545-linker in advance subsequently added scaffold and then co-incubated the two materials overnight in the cold room on a shaker. The verification of the products was carried out through 10% acrylamide electrophoresis. We found that no scaffold DNA could be seen on the gel, and a clear band was formed at about 300 bp, indicating that AP-74 M-545@4 had been successfully synthesized. Furthermore, the AP-74 M-545@4 remained stable after incubating in 37°C for 24 hours. Next, we compared the inhibitory ability of AP-74 M-545, AP-74 M-545-linker, and AP-74 M-545@4 on CS-Gal-1 through hemagglutination assay. The results shown that neither of the materials could inhibit hemagglutination. To investigate the therapeutic effect of the above-mentioned materials, we performed wound healing assay on two lung cancer cell lines CL1-0 and CL1-5. The data suggested that the AP-74 M-545@4 could possibly inhibit the migration of CL1-0 and CL1-5. Since we discovered AP-74 M-545@4 affected CL1-0 and CL1-5 in some level. Thus, we explored how AP-74 M-545@4 would affect two lung cancer cell lines. We performed western blot assay. The result suggested CL1-0 and CL1-5 were prone to epithelial changes. Taken together, our research indicated that AP-74 M545@4 might be a potential therapeutic agent for treating lung cancer.

    中文摘要 I Abstract III Acknowledgment V Content VII Figure Content X Abbreviations XI Introduction 1 Lung Cancer 1 Galectin-1 1 Galecin-1 in lung cancers 3 Aptamer 4 Multivalent Aptamer 7 Rationale and Specific Aims 9 Materials and method 10 10 % Polyacrylamide Electrophoresis 10 Cell culture 10 AP-74 M-545@4 Synthesis 10 Hemagglutination Assay 11 Western Blot Analysis 12 Antibodies 13 Coomassie Blue Staining 13 In vitro Wound Healing Assay 14 Proliferation Assay 14 Statistical Analysis 15 Results 16 The design of Tetrameric AP-74 M-545 (AP-74 M-545@4). 16 Commercially synthetic Scaffold DNA was in dimer form. 16 Overnight incubation at 4 ℃ showed a better result for Tetramer synthesis. 17 Completion of AP-74 M-545@4 synthesis. 17 The decreased ratio of ApL to Scaffold generated better purity of AP-74 M-545@4 but less quantity. 18 The quantity of AP-74 M-545@4 after storing at -80 ℃ for different periods of time showed no difference. 18 The quantity of AP-74 M-545@4 after storing at 4 °C for 7 days showed no significant in degradation. 19 The half-life of AP-74 M-545@4 after incubated at 37 °C was around 24 hours. 19 The stability of AP-74 M-545@4 was slightly better in 4 °C. 19 The method of synthesizing AP-74 M-545@4 was inefficient. 20 The purity of CS-Gal-1 protein was partially hydrolyzed. 20 Ap545, ApL and AP-74 M-545@4 could not inhibit hemagglutination. 21 Lower concentration level of CS-Gal-1 decreased the migration ability of CL1-0 and CL1-5. 21 The influence of AP-74 M-545@4 on the migration ability of CL1-0 and CL1-5. 22 The proliferation of CL1-0 was overall decreased but increased in CL1-5 when treating ApSbl, Ap545, ApL and AP-74 M-545@4. 22 A repeat experiment regarding to the influence of AP-74 M-545@4 on the migration ability of CL1-0 and CL1-5. 23 Minor changes of the expression of EMT biomarker in CL1-0 and CL1-5 when treated with 12 nM AP-74 M-545@4. 23 Discussion 24 Conclusion 30 References 31 Figures 40

    1. Mok TS. Personalized medicine in lung cancer: what we need to know. Nat Rev Clin Oncol. 2011;8(11):661-8.
    2. Didkowska J, Wojciechowska U, Mańczuk M, Łobaszewski J. Lung cancer epidemiology: contemporary and future challenges worldwide. Ann Transl Med. 2016;4(8):150.
    3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
    4. lung cancer statistics from cancer org. [Available from: https://www.cancer.org/cancer/types/lung-cancer/about/key-statistics.html.
    5. Inamura K. Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification. Front Oncol. 2017;7:193.
    6. Cruz CSD, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clinics in chest medicine. 2011;32(4):605-44.
    7. Zito Marino F, Bianco R, Accardo M, Ronchi A, Cozzolino I, Morgillo F, et al. Molecular heterogeneity in lung cancer: from mechanisms of origin to clinical implications. Int J Med Sci. 2019;16(7):981-9.
    8. Schabath MB, Cote ML. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(10):1563-79.
    9. Shanker M, Willcutts D, Roth JA, Ramesh R. Drug resistance in lung cancer. Lung Cancer: Targets and Therapy. 2010:23-36.
    10. Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact. 2019;309:108720.
    11. Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, et al. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N Engl J Med. 2020;383(7):640-9.
    12. Camby I, Le Mercier M, Lefranc F, Kiss R. Galectin-1: a small protein with major functions. Glycobiology. 2006;16(11):137r-57r.
    13. Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A, Serova M, Neuzillet C, Albert S, et al. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat Rev. 2014;40(2):307-19.
    14. Barrientos G, Freitag N, Tirado-González I, Unverdorben L, Jeschke U, Thijssen VL, et al. Involvement of galectin-1 in reproduction: past, present and future. Hum Reprod Update. 2014;20(2):175-93.
    15. Miller MC, Ribeiro JP, Roldós V, Martín-Santamaría S, Cañada FJ, Nesmelova IA, et al. Structural aspects of binding of α-linked digalactosides to human galectin-1. Glycobiology. 2011;21(12):1627-41.
    16. Kopitz J, von Reitzenstein C, Burchert M, Cantz M, Gabius HJ. Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem. 1998;273(18):11205-11.
    17. López-Lucendo MF, Solís D, André S, Hirabayashi J, Kasai K, Kaltner H, et al. Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J Mol Biol. 2004;343(4):957-70.
    18. Cho M, Cummings RD. Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J Biol Chem. 1995;270(10):5198-206.
    19. Satelli A, Rao PS, Gupta PK, Lockman PR, Srivenugopal KS, Rao US. Varied expression and localization of multiple galectins in different cancer cell lines. Oncol Rep. 2008;19(3):587-94.
    20. Nickel W. Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic. 2005;6(8):607-14.
    21. Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. Nature. 1995;378(6558):736-9.
    22. Camby I, Belot N, Rorive S, Lefranc F, Maurage CA, Lahm H, et al. Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol. 2001;11(1):12-26.
    23. Chiang WF, Liu SY, Fang LY, Lin CN, Wu MH, Chen YC, et al. Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncol. 2008;44(4):325-34.
    24. Wu MH, Hong TM, Cheng HW, Pan SH, Liang YR, Hong HC, et al. Galectin-1-mediated tumor invasion and metastasis, up-regulated matrix metalloproteinase expression, and reorganized actin cytoskeletons. Mol Cancer Res. 2009;7(3):311-8.
    25. Le Mercier M, Mathieu V, Haibe-Kains B, Bontempi G, Mijatovic T, Decaestecker C, et al. Knocking down galectin 1 in human hs683 glioblastoma cells impairs both angiogenesis and endoplasmic reticulum stress responses. J Neuropathol Exp Neurol. 2008;67(5):456-69.
    26. Moiseeva EP, Williams B, Goodall AH, Samani NJ. Galectin-1 interacts with beta-1 subunit of integrin. Biochem Biophys Res Commun. 2003;310(3):1010-6.
    27. van den Brûle F, Califice S, Garnier F, Fernandez PL, Berchuck A, Castronovo V. Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Invest. 2003;83(3):377-86.
    28. Anderson LR, Owens TW, Naylor MJ. Structural and mechanical functions of integrins. Biophys Rev. 2014;6(2):203-13.
    29. Hsieh SH, Ying NW, Wu MH, Chiang WF, Hsu CL, Wong TY, et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene. 2008;27(26):3746-53.
    30. Cagnoni AJ, Giribaldi ML, Blidner AG, Cutine AM, Gatto SG, Morales RM, et al. Galectin-1 fosters an immunosuppressive microenvironment in colorectal cancer by reprogramming CD8(+) regulatory T cells. Proc Natl Acad Sci U S A. 2021;118(21).
    31. Nambiar DK, Aguilera T, Cao H, Kwok S, Kong C, Bloomstein J, et al. Galectin-1-driven T cell exclusion in the tumor endothelium promotes immunotherapy resistance. J Clin Invest. 2019;129(12):5553-67.
    32. He J, Baum LG. Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab Invest. 2006;86(6):578-90.
    33. Ito K, Scott SA, Cutler S, Dong LF, Neuzil J, Blanchard H, et al. Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress. Angiogenesis. 2011;14(3):293-307.
    34. Koonce NA, Griffin RJ, Dings RPM. Galectin-1 Inhibitor OTX008 Induces Tumor Vessel Normalization and Tumor Growth Inhibition in Human Head and Neck Squamous Cell Carcinoma Models. Int J Mol Sci. 2017;18(12).
    35. Leung Z, Ko FCF, Tey SK, Kwong EML, Mao X, Liu BHM, et al. Galectin-1 promotes hepatocellular carcinoma and the combined therapeutic effect of OTX008 galectin-1 inhibitor and sorafenib in tumor cells. J Exp Clin Cancer Res. 2019;38(1):423.
    36. Rabinovich GA, Cumashi A, Bianco GA, Ciavardelli D, Iurisci I, D'Egidio M, et al. Synthetic lactulose amines: novel class of anticancer agents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation and endothelial cell morphogenesis. Glycobiology. 2006;16(3):210-20.
    37. Zhang N, Peng F, Wang Y, Yang L, Wu F, Wang X, et al. Shikonin induces colorectal carcinoma cells apoptosis and autophagy by targeting galectin-1/JNK signaling axis. Int J Biol Sci. 2020;16(1):147-61.
    38. Shih TC, Liu R, Fung G, Bhardwaj G, Ghosh PM, Lam KS. A Novel Galectin-1 Inhibitor Discovered through One-Bead Two-Compound Library Potentiates the Antitumor Effects of Paclitaxel in vivo. Mol Cancer Ther. 2017;16(7):1212-23.
    39. Shih TC, Liu R, Wu CT, Li X, Xiao W, Deng X, et al. Targeting Galectin-1 Impairs Castration-Resistant Prostate Cancer Progression and Invasion. Clin Cancer Res. 2018;24(17):4319-31.
    40. Szoke T, Kayser K, Baumhakel JD, Trojan I, Furak J, Tiszlavicz L, et al. Prognostic significance of endogenous adhesion/growth-regulatory lectins in lung cancer. Oncology. 2005;69(2):167-74.
    41. Kuo PL, Huang MS, Cheng DE, Hung JY, Yang CJ, Chou SH. Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor. J Biol Chem. 2012;287(13):9753-64.
    42. Chung LY, Tang SJ, Sun GH, Chou TY, Yeh TS, Yu SL, et al. Galectin-1 promotes lung cancer progression and chemoresistance by upregulating p38 MAPK, ERK, and cyclooxygenase-2. Clin Cancer Res. 2012;18(15):4037-47.
    43. Hsu YL, Wu CY, Hung JY, Lin YS, Huang MS, Kuo PL. Galectin-1 promotes lung cancer tumor metastasis by potentiating integrin α6β4 and Notch1/Jagged2 signaling pathway. Carcinogenesis. 2013;34(6):1370-81.
    44. Kuo P, Bratman SV, Shultz DB, von Eyben R, Chan C, Wang Z, et al. Galectin-1 mediates radiation-related lymphopenia and attenuates NSCLC radiation response. Clin Cancer Res. 2014;20(21):5558-69.
    45. Corral JM, Puerto-Nevado LD, Cedeño M, Río-Vilariño A, Mahillo-Fernández I, Galeano C, et al. Galectin-1, a novel promising target for outcome prediction and treatment in SCLC. Biomed Pharmacother. 2022;156:113987.
    46. Balta S, Ozturk C. The platelet-lymphocyte ratio: A simple, inexpensive and rapid prognostic marker for cardiovascular events. Platelets. 2015;26(7):680-1.
    47. Toda M, Tsukioka T, Izumi N, Komatsu H, Okada S, Hara K, et al. Platelet-to-lymphocyte ratio predicts the prognosis of patients with non-small cell lung cancer treated with surgery and postoperative adjuvant chemotherapy. Thorac Cancer. 2018;9(1):112-9.
    48. Ali MH, Elsherbiny ME, Emara M. Updates on Aptamer Research. Int J Mol Sci. 2019;20(10).
    49. Tsai YT, Liang CH, Yu JH, Huang KC, Tung CH, Wu JE, et al. A DNA Aptamer Targeting Galectin-1 as a Novel Immunotherapeutic Strategy for Lung Cancer. Mol Ther Nucleic Acids. 2019;18:991-8.
    50. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505-10.
    51. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818-22.
    52. Ozer A, Pagano JM, Lis JT. New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization. Mol Ther Nucleic Acids. 2014;3(8):e183.
    53. Sun H, Zu Y. A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules. 2015;20(7):11959-80.
    54. Nutiu R, Li Y. Structure-switching signaling aptamers. J Am Chem Soc. 2003;125(16):4771-8.
    55. Song S, Wang L, Li J, Fan C, Zhao J. Aptamer-based biosensors. TrAC Trends in Analytical Chemistry. 2008;27(2):108-17.
    56. Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science. 2000;287(5454):820-5.
    57. Tombelli S, Minunni M, Mascini M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng. 2007;24(2):191-200.
    58. Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, et al. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics. 2015;5(1):23-42.
    59. Yoon S, Rossi JJ. Aptamers: Uptake mechanisms and intracellular applications. Adv Drug Deliv Rev. 2018;134:22-35.
    60. Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999;45(9):1628-50.
    61. Ireson CR, Kelland LR. Discovery and development of anticancer aptamers. Mol Cancer Ther. 2006;5(12):2957-62.
    62. Javier DJ, Nitin N, Levy M, Ellington A, Richards-Kortum R. Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug Chem. 2008;19(6):1309-12.
    63. Shaw JP, Kent K, Bird J, Fishback J, Froehler B. Modified deoxyoligonucleotides stable to exonuclease degradation in serum. Nucleic Acids Res. 1991;19(4):747-50.
    64. Gupta S, Drolet DW, Wolk SK, Waugh SM, Rohloff JC, Carter JD, et al. Pharmacokinetic Properties of DNA Aptamers with Base Modifications. Nucleic Acid Ther. 2017;27(6):345-53.
    65. Lao YH, Phua KK, Leong KW. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano. 2015;9(3):2235-54.
    66. Davies DR, Gelinas AD, Zhang C, Rohloff JC, Carter JD, O'Connell D, et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc Natl Acad Sci U S A. 2012;109(49):19971-6.
    67. Shiang YC, Ou CM, Chen SJ, Ou TY, Lin HJ, Huang CC, et al. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles. Nanoscale. 2013;5(7):2756-64.
    68. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.
    69. Cao Z, Tong R, Mishra A, Xu W, Wong GC, Cheng J, et al. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed Engl. 2009;48(35):6494-8.
    70. Shen Y, Zhang J, Hao W, Wang T, Liu J, Xie Y, et al. Copolymer micelles function as pH-responsive nanocarriers to enhance the cytotoxicity of a HER2 aptamer in HER2-positive breast cancer cells. Int J Nanomedicine. 2018;13:537-53.
    71. Gao T, Mao Z, Li W, Pei R. Anti-PD-L1 DNA aptamer antagonizes the interaction of PD-1/PD-L1 with antitumor effect. J Mater Chem B. 2021;9(3):746-56.
    72. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181-202.
    73. Koutsioumpa M, Papadimitriou E. Cell surface nucleolin as a target for anti-cancer therapies. Recent Pat Anticancer Drug Discov. 2014;9(2):137-52.
    74. Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res. 2008;68(7):2358-65.
    75. Lee YJ, Kim IS, Park SA, Kim Y, Lee JE, Noh DY, et al. Periostin-binding DNA aptamer inhibits breast cancer growth and metastasis. Mol Ther. 2013;21(5):1004-13.
    76. Opazo F, Levy M, Byrom M, Schäfer C, Geisler C, Groemer TW, et al. Aptamers as potential tools for super-resolution microscopy. Nat Methods. 2012;9(10):938-9.
    77. Fornasiero EF, Opazo F. Super-resolution imaging for cell biologists: concepts, applications, current challenges and developments. Bioessays. 2015;37(4):436-51.
    78. Ng EW, Shima DT, Calias P, Cunningham ET, Jr., Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123-32.
    79. Mammen M, Choi SK, Whitesides GM. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew Chem Int Ed Engl. 1998;37(20):2754-94.
    80. Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera JM, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N Engl J Med. 2017;376(9):836-47.
    81. Cutler JI, Auyeung E, Mirkin CA. Spherical nucleic acids. Journal of the American Chemical Society. 2012;134(3):1376-91.
    82. Shi H, Hoffman BE, Lis JT. RNA aptamers as effective protein antagonists in a multicellular organism. Proc Natl Acad Sci U S A. 1999;96(18):10033-8.
    83. Vorobyeva M, Vorobjev P, Venyaminova A. Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications. Molecules. 2016;21(12).
    84. Zhang Z, Ali MM, Eckert MA, Kang DK, Chen YY, Sender LS, et al. A polyvalent aptamer system for targeted drug delivery. Biomaterials. 2013;34(37):9728-35.
    85. McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, et al. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest. 2008;118(1):376-86.
    86. Sheng W, Chen T, Tan W, Fan ZH. Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS Nano. 2013;7(8):7067-76.
    87. Geng Z, Wang L, Liu K, Liu J, Tan W. Enhancing anti-PD-1 Immunotherapy by Nanomicelles Self-Assembled from Multivalent Aptamer Drug Conjugates. Angew Chem Int Ed Engl. 2021;60(28):15459-65.
    88. Bai C, Gao S, Hu S, Liu X, Li H, Dong J, et al. Self-Assembled Multivalent Aptamer Nanoparticles with Potential CAR-like Characteristics Could Activate T Cells and Inhibit Melanoma Growth. Mol Ther Oncolytics. 2020;17:9-20.
    89. Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E. Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res. 2003;63(21):7483-9.
    90. Wang X, Lim HJ, Son A. Characterization of denaturation and renaturation of DNA for DNA hybridization. Environ Health Toxicol. 2014;29:e2014007.
    91. Hsu H-L, Hsu W-T, Leu J. Effects of environmentally benign solvents in the agarose gel electrolytes on dye-sensitized solar cells. Electrochimica Acta. 2011;56(17):5904-9.
    92. Sano K, Ogawa H. Hemagglutination (inhibition) assay. Methods Mol Biol. 2014;1200:47-52.
    93. Cavalli A, Martella V, Desario C, Camero M, Lanave G, Barrs VR, et al. Modified haemagglutination inhibition assay for the detection of canine parvovirus type 2 antibodies in dog sera. Vet J. 2021;274:105709.
    94. Kumari K, Gulati S, Smith DF, Gulati U, Cummings RD, Air GM. Receptor binding specificity of recent human H3N2 influenza viruses. Virol J. 2007;4:42.
    95. Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 2009;459(7245):414-8.
    96. Seeman NC. Nanomaterials based on DNA. Annu Rev Biochem. 2010;79:65-87.
    97. Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297-302.
    98. Han X, Jiang Y, Li S, Zhang Y, Ma X, Wu Z, et al. Multivalent aptamer-modified tetrahedral DNA nanocage demonstrates high selectivity and safety for anti-tumor therapy. Nanoscale. 2018;11(1):339-47.
    99. Mendez MA, Szalai VA. Synapsable quadruplex-mediated fibers. Nanoscale Res Lett. 2013;8(1):210.
    100. Davis DL, O'Brien EP, Bentzley CM. Analysis of the degradation of oligonucleotide strands during the freezing/thawing processes using MALDI-MS. Anal Chem. 2000;72(20):5092-6.
    101. Tan X, Ge L, Zhang T, Lu Z. Preservation of DNA for data storage. Russian Chemical Reviews. 2021;90(2):280.
    102. Mrázková J, Malinovská L, Wimmerová M. Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins. PLoS One. 2019;14(7):e0220318.
    103. Gupta RK, Pande AH, Gulla KC, Gabius HJ, Hajela K. Carbohydrate-induced modulation of cell membrane. VIII. Agglutination with mammalian lectin galectin-1 increases osmofragility and membrane fluidity of trypsinized erythrocytes. FEBS Lett. 2006;580(6):1691-5.
    104. Linnik J, Syedbasha M, Hollenstein Y, Halter J, Egli A, Stelling J. Model-based inference of neutralizing antibody avidities against influenza virus. PLoS Pathog. 2022;18(1):e1010243.
    105. Chen Y, Cai J. Membrane deformation of unfixed erythrocytes in air with time lapse investigated by tapping mode atomic force microscopy. Micron. 2006;37(4):339-46.
    106. Arashiki N, Kimata N, Manno S, Mohandas N, Takakuwa Y. Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence. Biochemistry. 2013;52(34):5760-9.
    107. Kozlova E, Chernysh A, Moroz V, Gudkova O, Sergunova V, Kuzovlev A. Transformation of membrane nanosurface of red blood cells under hemin action. Sci Rep. 2014;4:6033.
    108. Liu DL, Zhao LX, Zhang S, Du JR. Peroxiredoxin 1-mediated activation of TLR4/NF-κB pathway contributes to neuroinflammatory injury in intracerebral hemorrhage. Int Immunopharmacol. 2016;41:82-9.
    109. Welbourn EM, Wilson MT, Yusof A, Metodiev MV, Cooper CE. The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radic Biol Med. 2017;103:95-106.
    110. Guardia CM, Caramelo JJ, Trujillo M, Méndez-Huergo SP, Radi R, Estrin DA, et al. Structural basis of redox-dependent modulation of galectin-1 dynamics and function. Glycobiology. 2014;24(5):428-41.
    111. Ishibashi S, Kuroiwa T, Sakaguchi M, Sun L, Kadoya T, Okano H, et al. Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp Neurol. 2007;207(2):302-13.
    112. Sakaguchi M, Okano H. Neural stem cells, adult neurogenesis, and galectin-1: from bench to bedside. Dev Neurobiol. 2012;72(7):1059-67.
    113. Inagaki Y, Sohma Y, Horie H, Nozawa R, Kadoya T. Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties. Eur J Biochem. 2000;267(10):2955-64.
    114. Booth WT, Schlachter CR, Pote S, Ussin N, Mank NJ, Klapper V, et al. Impact of an N-terminal Polyhistidine Tag on Protein Thermal Stability. ACS Omega. 2018;3(1):760-8.
    115. Earl LA, Bi S, Baum LG. Galectin multimerization and lattice formation are regulated by linker region structure. Glycobiology. 2011;21(1):6-12.
    116. Arnaud J, Tröndle K, Claudinon J, Audfray A, Varrot A, Römer W, et al. Membrane deformation by neolectins with engineered glycolipid binding sites. Angew Chem Int Ed Engl. 2014;53(35):9267-70.
    117. Li H, Chen Z, Zhu W. Variability: Human nature and its impact on measurement and statistical analysis. J Sport Health Sci. 2019;8(6):527-31.
    118. Baker M. Reproducibility: Respect your cells! Nature. 2016;537(7620):433-5.
    119. Cooper D, Norling LV, Perretti M. Novel insights into the inhibitory effects of Galectin-1 on neutrophil recruitment under flow. J Leukoc Biol. 2008;83(6):1459-66.
    120. Zhu W, Wang H, Zhu D. Wnt/β-catenin signaling pathway in lung cancer. Medicine in Drug Discovery. 2022;13:100113.
    121. Grzegrzolka J, Biala M, Wojtyra P, Kobierzycki C, Olbromski M, Gomulkiewicz A, et al. Expression of EMT Markers SLUG and TWIST in Breast Cancer. Anticancer Res. 2015;35(7):3961-8.
    122. Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, et al. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells. 2019;8(10).

    無法下載圖示 校內:2028-08-25公開
    校外:2028-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE