簡易檢索 / 詳目顯示

研究生: 徐佳任
Syu, Jia-Ren
論文名稱: 含稀土金屬耐候鋼經大氣腐蝕加速測試銹層性質分析研究
Characterization of Rust Layer formed on Rare Earth Containing Weathering Steel after Accelerated Atmospheric Cirrosion Test
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 57
中文關鍵詞: 耐候鋼加速大氣腐蝕模擬試驗乾濕循環試驗烘烤處理銹層結構電化學性質
外文關鍵詞: Weathering steel, laboratory-accelerated atmospheric corrosion test, Cyclic wet/dry alternating exposure test, Baking treatment, Rust microstructure, Electrochemical property
相關次數: 點閱:190下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究已建立加速大氣腐蝕模擬技術,並將其所得到之數據與既有之長期大氣腐蝕暴露試驗結果加以比較,以發展可靠而快速的耐候鋼耐蝕性質評估方法。並利用此新方法,配合腐蝕產物的分析,來評估稀土元素的添加對於耐候鋼耐蝕性質的影響。
      
    為達到加速大氣腐蝕,利用烘烤處理及第二階段乾溼循環暴露試驗,並研究不同稀土元素含量之耐候鋼在0.05 wt% NaCl水溶液中模擬在大氣條件下的銹蝕演化過程,並將所得之銹層以掃描式電子顯微鏡(Scanning Electron Microscope,SEM)、X光繞射儀(X-Ray Diffraction Spectroscopy,XRD)和恆電位儀進行分析,探討合金元素對耐候鋼於低濃度NaCl環境下銹層生成過程的影響與作用機制。
      
    試驗結果顯示,稀土金屬含量0.0016 wt% 耐候鋼裸材有較負的腐蝕電位;在腐蝕初期的腐蝕速率隨著循環次數而呈線性增加,界面反應控制;腐蝕產物組成為γ-FeOOH、Fe3O4和α-FeOOH;銹層橫截面形貌發現有內外銹層存在以及結構和元素分佈差異,然而保護性銹層尚未形成;各耐候鋼表面銹層在0.05 wt% NaCl水溶液中的極化曲線有明顯的差異。
    乾溼循環暴露試驗後再施以烘烤處理,銹皮組成改變,由非晶質銹及Fe3O4組成;銹層缺陷及裂縫顯著減少,且銹層與基材界面的附著性獲得提升。動電位極化曲線顯示:不同稀土含量耐候鋼銹層的腐蝕電位及陰、陽極電流密度差異也變小。

    烘烤處理後再進行第二階段乾溼循環試驗,發現低稀土金屬添加量耐候鋼腐蝕速率隨著循環次數而漸減,是擴散機制,而較高稀土金屬添加量耐候鋼仍為界面控制,稀土金屬含量多寡確實影響銹層厚度及重量;耐候鋼銹層轉為結晶相,橫截面的緻密性及附著性更佳;在0.05 wt% NaCl水溶液中的腐蝕電位提高,抑制陽極氧化反應。

    The chemical compositions and structures of the rusts formed on the surfaces of rare earth (RE) containing weathering steels, after laboratory-accelerated test, with and without baking treatment, were characterized using XRD、SEM and EDS. Potentiodynamic polarization curve measurement was employed to evaluate the stability of the rust formed under different condition. The effect of rare earth element on the atmospheric corrosion resistance was explored.
    The experimental results showed that the bare steel containing 0.0016 wt% RE had the lowest corrosion potential in 0.05 wt% NaCl solution. After cyclic wet/dry alternating exposure in the fog containing 0.05 wt% NaCl solution, the as-formed rust consisted of α-FeOOH、γ-FeOOH and Fe3O4, while the inner and outer scales gad different chemical composition and structure.
    Further baking treatments at 150oC for 15 days, the rust underwent phase transformation from crystalline to amorphous phase. In addition, the defect density decreased and adhesion between the substrate and rust increased. The polarization curves of the specimens with baking treatment had almost similar feature in 0.05 wt% NaCl solution.
    Further wet-dry cyclic exposure caused the transformation of the rust from amorphous to crystalline phase again. A more compact and good adherence between the substrate and rust was obtained. In 0.05 wt% NaCl solution, the corrosion potential was further increased and the anodic current density was reduced.

    總目錄 摘要 I 致謝 V 總目錄 VII 表目錄 X 圖目錄 XI 壹、前言 1 貳、文獻回顧 3 2.1 大氣腐蝕 3 2.2 耐候鋼及其銹層 4 2.3 稀土元素的作用 6 參、研究策略、步驟與方法 9 3.1 實驗材料 9 3.2 加速大氣腐蝕模擬暴露試驗 9 3.3 重量損失分析 10 3.4 銹層結構分析 10 3.5 銹層形貌及化學組成分析 11 3.6 電化學性質測試 11 肆、結果與討論 15 4.1 重量損失分析 15 4.1.1 乾溼循環試驗後之重量損失分析 15 4.1.2 再進行第二階段乾溼循環試驗後之重量損失分析 16 4.2 銹層結構分析 17 4.2.1 乾溼循環試驗後之銹層結構分析 17 4.2.2 150 oC烘烤處理後之銹層結構分析 19 4.2.3 再進行第二階段乾溼循環試驗後之銹層結構分析 20 4.3 銹層形貌及化學組成分析 20 4.3.1 乾溼循環試驗後之銹層形貌及化學組成分析 20 4.3.2 150 oC烘烤處理後之銹層形貌及化學組成分析 22 4.3.3 再進行反覆乾溼循環試驗後之銹層形貌及化學組成分析 23 4.4 電化學性質分析 24 4.4.1 耐候鋼裸材之開路電位及極化曲線 24 4.4.2 乾溼循環試驗後(條件I)之極化曲線 25 4.4.3 150 oC烘烤處理後(條件II)之極化曲線 26 4.4.4 第二階段乾溼循環試驗後(條件III)之極化曲線 27 伍、結論 49 陸、參考資料 51

    1. 董傑,董俊華,韓恩厚,劉春名,柯偉,低碳鋼帶鏽電極的腐蝕行為,腐蝕科學與防護技術 18(6),414-417(2006) 。
    2. 劉國超,董俊華,韓恩厚,柯偉,耐候鋼銹層研究進展, 腐蝕科學與防護技術 18(4) 268-272(2006)。
    3. 李春豔,王向東,江杜明,陳小平,翁宇,張靜波,張代名,稀土對低碳鋼耐大氣腐蝕性能影響的研究,稀土26,23-28(2005) 。
    4. 陳小平,王向東,劉清友,楊洪梅,添加P和RE對碳鋼耐腐蝕性能的影響,材料保護 41,59-61(2008)。
    5. C. Zhang, C. Dayong, L. Bo, Z. Tianchen, F. Yunchang, Microstructure and mechanical properties of dual-phase weathering steel 09CuPTiRe, Journal of Materials Science 39, 4393-4396(2004).
    6. 于敬敦,吳幼林,崔秀岭,08CuPVRE鋼耐大氣腐蝕的機理,中國腐蝕與防護學報 14, 82-86 (1994)。
    7. 林勤,陳幫文,郭鋒,郭英,孫學義,張志平,稀土改善09CuPTiRE耐候鋼耐蝕性的作用機理,稀土 24,26-28(2003)。
    8. 朴秀玉,王龍妹,張家芸,岳麗杰,朱京西,稀土含量對10PCuRE耐候鋼耐蝕性能的影響,中國稀土學報 22,457-460(2004)。
    9. 岳麗杰,王龍妹,徐成海,朴秀玉,朱京希,10PCuRE耐候鋼耐蝕銹層的電化學特徵,稀土 26,56-60(2005)。
    10. 岳麗杰,Cu-P-RE耐候鋼中稀土行為作用及機理的研究,中國東北大學博士學位論文,(2006)。
    11. 王傳雅,戚正風,耐候鋼的化學成分和性能,特殊鋼 18(1) 13-19(1997) 。
    12. 于敬敦,吳幼林,崔秀岭,08CuPVRE鋼耐大氣腐蝕的機理,中國腐蝕與防護學報 14, 82-86 (1994)。
    13. M. Stratmann, K. Bohnenkamp, T. Ramchandran, The influence of copper upon the atmospheric corrosion of iron, Corrosion Science 27, 905-926(1987).
    14. 董俊華,艾美蓉,韓恩厚,柯偉,Mn-Cu 耐候鋼陽離子選擇性銹層結構的EXAFS 研究,第六屆海峽兩岸材料腐蝕與防護研討會論文集, 9-14 (2008)。
    15. 梁彩鳳,侯文泰,合金元素對碳鋼和低合金鋼在大氣中耐腐蝕性的影響,中國腐蝕與防護學報 17,87-97(1997)。
    16. O. Benali, M. Abdelmoula, Ph. Refait, J. M. Génin, The behaviour of phosphate ions as corrosion inhibitor for Fe (II) – Fe (III) hydroxycarbonate green rust, Hyperfine Interactions 139/140, 223-230(2002).
    17. T. Misawa, K. Asami, K. Hashimoto, The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel, Corrosion Science 14,279-289 (1974).
    18. H. Kihira, S. Ito, T. Murata, The behavior of phosphorus during passivation of weathering steel by protective patina formation, Corrosion Science 31, 383-388(1990).
    19. T. Kamimura, M. Stratmann, The influence of chormium on the atmospheric corrosion of steel, Corrosion Science 43, 429-447(2001).
    20. T. Misawa, T. Kyuno, W. Suetaka, S. Shimodaira, The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels, Corrosion Science 11, 35-48 (1971) .
    21. S. J. Oh, D. C. Cook, H. E. Townsend, Atmospheric corrosion of different steels in marine, rural and industrial environment, Corrosion Science 41, 1687-1702(1999).
    22. R. M. Cornell, U. Schwertmann, The Iron Oxides, second completely revised and enlarged edition, Wieley-Vch (2000).
    23. A. A. Olowe, D. Rezel, J. M. R. Génin, Mechanism of formation of magnetite from ferrous hydroxide in aqueous corrosion processes, Hyperfine Interactions 46, 429-436 (1993).
    24. 張惠文,毛裕文,稀土對鋼耐大氣腐蝕性能的影響,北京科技大學學報 16,492-497(1994)。
    25. 馬傑,劉芳,稀土元素在鋼中的作用及對鋼性能的影響,鋼鐵研究 37,54-56(2009)。
    26. 余景生,余宗森,章复中,稀土處理手冊,冶金工業出版社(1992)。
    27. 岳麗杰,王龍妹,徐成海,朴秀玉,Cu-P耐候鋼中稀土對夾雜物和耐蝕性的影響,東北大學學報(自然科學版)25,1179-1182 (2004)。
    28. 岳麗杰,王龍妹,陳蘊博,稀土對耐候鋼耐蝕性能的影響研究,材料工程54,74-77 (2009)。
    29. 鄭子樵,李紅英,稀土功能材料,曉園出版社,(2006)。
    30. T. Nishimura, H. Katayama, K. Noda, T. Kodama, Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments, Corrosion Science 42, 1611-1621 (2000).
    31. I. Suzuki, Y. Hisamatsu, Y. Hisamatsu, Electrochemical properties of iron rusts, Corrosion Science 19, 521-535 (1979).
    32. J. M. R. Génin, A. A. Olowe, B. Resiak, European federation corrosion series, London The Institute of Metals (1993).
    33. Q. Lin, F. Guo, X. Y. Zhu, Behaviors of lanthanum and cerium on grain boundaries in carbon manganese clean steel, Journal of Rare Earth 25, 485-489 (2007).
    34. 岳麗杰,陳為公,王龍妹,Cu-P-RE耐候鋼的耐蝕性能,北京科技大學學報 31,568-572 (2009)。
    35. 劉承軍,劉宏亮,毛天成,稀土對B450NbRE鋼耐大氣腐蝕性能的影響,稀土 29,81-84(2008)。
    36. 張耀南, 碳鋼、耐候鋼與鍍鋅鋼在不同腐蝕環境近十年之大氣腐蝕行為研究, 防蝕工程 19(1) ,21-40(2005)。
    37. 張耀南,劉宏義,魏豊義,碳鋼與耐候鋼在多風都市八年半之大氣腐蝕行為研究,防蝕工程 18(1),79-86 (2004)。
    38. C. Leygraf, T. E. Graedel, Atomosphric Corrosion, John Wiley & Sons, Inc. ( 2000).
    39. Y. Y. Chen, H. J. Tzeng, L. I. Wei, L. H. Wang, J. C. Oung, H.C. Shih, Corrosion Resistance and Mechanical Properties of Low-Alloy Steels under Atmospheric Conditions, Corrosion Science 47, 1001-1021 (2005).
    40. 董俊華,柯偉,低碳鋼大氣腐蝕室內模擬加速腐蝕試驗與鏽蝕規律,電化學 15(2),170-178 (2009)。
    41. I. Suzuki, Y. Hisamatsu, Y. Hisamatsu, Electrochemical Properties of Iron Rusts, Corrosion Science 19, 521-535 (1979).
    42. T. Misawa, K. Asami, K. Hashimoto, The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel, Corrosion Science 14, 279-289(1974).
    43. J. T. Keiser, C. W. Brown, Characterization of the passive film formed on weathering steel, Corrosion Science 23, 251-259(1983).
    44. T. Kamimura, M. Stratmann, The influence of chormium on the atmospheric corrosion of steel, Corrosion Science 43, 429-447(2001).
    45. S. J. Oh, D. C. Cook, H. E. Townsend, Atmospheric corrosion of different steels in marine, rural and industrial environment, Corrosion Science 41, 1687-1702(1999).
    46. R. M. Cornell, U. Schwertmann, The Iron Oxides, second completely revised and enlarged edition, Wieley-Vch, (2000).
    47. I. Suzuki, Y. Hisamatsu, Y. Hisamatsu, Electrochemical properties of iron rusts, Corrosion Science 19, 521-535(1979).
    48. K. Asami, M. Kikuchi, In-depth distribution of rusts on plain carbon steel and weathering steels exposed to coastal–industrial atmosphere for 17 years, Corrosion Science 45, 2671-2688(2003).
    49. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Composition and protective ability of rust layer formed on weathering steel exposed to various environments, Corrosion Science 48, 2799-2812(2006).
    50. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, T. Misawa, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corrosion Science 36, 283–299(1994).
    51. Q. C. Zhang, J. S. Wu, J. J. Wang, Corrosion behavior of weathering steel in marine atmosphere, Materials Chemistry and Physics 77, 603-608(2002).
    52. U. R. Evans, C. A. J. Taylor, Mechanism of atmospheric rusting, Corrosion Science 28, 227-246(1972).
    53. T. Misawa, K. Hashomoto, S. Shimodaora, The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature, Corrosion Science 14, 131-149(1974).

    下載圖示 校內:2014-09-01公開
    校外:2014-09-01公開
    QR CODE