| 研究生: |
范景翔 Fan, Chiang-Hsiang |
|---|---|
| 論文名稱: |
非線性系統動態行為之預測與分析 Prediction and Analyis of the Dynamic Behavior of Nonlinear Systems |
| 指導教授: |
黃世宏
Hwang, Shyh-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 非線性 、動態 、分歧 |
| 外文關鍵詞: | Nonlinear, Dynamic, Bifurcation |
| 相關次數: | 點閱:86 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化工程序由於存在高度非線性,導致其經常出現複雜的動態行為,包括多重恆態、週期震盪、週期倍增、圓環面或甚至達到混沌狀態。
本論文以化工程序中常見的連續攪拌反應器系統作為研究對象,針對該系統的一般性分歧點,應用分歧理論裡的Center Manifold 映射及標準模型(Normal Form)來預測分歧點附近的動態變化。我們首先分析該系統在不同開環操作範圍中的線性穩定性變化情形。接著,分別加入比例與比例積分控制器,藉著調整控制器參數來觀察控制器所衍生分歧點附近的非線性動態變化。在比例控制下, 標準模型可預測出週期震盪的振幅與穩定性,其結果與系統與安全操作範圍密切相關。而在比例積分控制下,藉由調整比例與積分增益來觀察系統經由週期倍增發展至混沌的路徑。最後,藉著費根堡數的計算,可以更準確地找出系統週期倍增的對應參數值。
High nonlinearity existing in most chemical processes could result in complicated dynamic behavior, including multiple steady states, limit cycles, period doubling, torus and chaos.
This thesis analyzes a continuous stirred tank reactor system often encountered in the process industry. Generic bifurcation points of the system are explored and the dynamics in the vicinity of each bifurcation point are predicted based on center manifold projection and normal form provided by bifurcation theory. First, we analyze the linearized stability of the CSTR system under various open-loop operating ranges. Subsequently, a proportional and a proportional-integral controller are introduced, and the resulting nonlinear dynamic behavior near the controller-induced bifurcation points are observed by adjusting the controller gains. Under proportional control, the normal form model gives immediately the amplitude and stability of the limit cycle, which are consistent with the simulation results. Under proportional-integral control, we can identify the route from period doubling to chaos with changes in the controller gains. Finally, parameter values at which period doubling occurs is further confirmed by the Feigenbaum number.
[1] Alos, M. A., F. Strozzi and M. Zaldivar, “A New Method for Assessing the Thermal Stability of Semibatch Processes Based on Lyapunov Exponents,” Chem. Eng. Sci., 51, 3089 (1996).
[2] Balakotaiah, V. and D. Luss, “Explicit Runaway Criterion for Catalytic Reactors with Transport Limitations,” AIChE J., 37, 1780 (1991).
[3] Balakotaiah, V., D. Kodra and D. Nguyen, “Runaway Limits for Heterogeneous and Catalytic Reactors,” Chem. Eng. Sci., 50, 1149 (1995).
[4] Barkelew, C. H., “Stability of Adiabatic Reactors,” ACS Symp. Ser., 237, 337 (1984).
[5] Bronnikova, T. V., V. R. Fed’kina, W. M. Schaffer and L. F. Olsen, “Period-Doubling Bifurcations and Chaos in a Detailed Model of the Peroxidase-oxidase Reaction,” Physical Chemistry, 99, (1995).
[6] Boe, E., “The Dynamics and Control of Nonlinear Systems Processing a Large Time Delay,” Ph.D. Thesis, University of Houston, Houston, USA (1988).
[7] Chang, H. C. and L. H. Chen, “Bifurcation Characteristics of Nonlinear Systems under Conventional PID Control,” Chem. Eng. Sci., 39, 1127 (1984).
[8] Chua, L. O. and H. Kokubu, “Normal Forms for Nonlinear Vector Fields – Part I: Theory and Algorithm,” IEEE Trans. on Circuits and Systems, 35, 863 (1988).
[9] Chua, L. O. and H. Kokubu, “Normal Forms for Nonlinear Vector Fields – Part II: Applications,” IEEE Trans. on Circuits and Systems, 36, 51 (1989).
[10] Curry, J., “A Generalized Lorenz System”, Comm. Math. Phys., 60, 193 (1978)
[11] Douglas, J. M. and D. W. T. Rippin, “Unsteady State Process Operation”, Chem. Eng. Sci., 21, 305 (1966)
[12] Feigenbaum, M. J., “Quantitative Universality for a Class of Nonlinear Transformations”, J. Stat. Phys., 19, 25 (1978)
[13] Guckenheimer, J. and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer, New York, USA (1983).
[14] Henon, M. and C. Heiles, “The Applicability of the Third Integral of Motion : Some Numerical Experiments”, Astron. J., 69, 73 (1964)
[15] Holms, P. J., “A Strange Family of Three-Dimensional Vector Fields Near a Degenerate Singularity,” Journal of Differential Equations, 37, 382 (1980).
[16] Hwang, S. H. and H. C. Chang, “Process Dynamic Models for Heterogeneous Chemical Reactor – An Application of Dynamic Singularity Theory,” Chem. Eng. Sci., 41, 953 (1986).
[17] Hwang, S. H. and H. C. Chang, “Turbulent and Inertial Rolls Waves in Inclined Film Flow,” Phys. Fluids, 30, 1259 (1987).
[18] Hwang, S. H. and H. C. Chang, “Non-Boussinesq Effects of Transitions in Hele-Shaw Convection,” Phys. Fluids, A1, 924 (1989).
[19] Kuznetsov, Y. A., CONTENT-Integrated Environment for Analysis of Dynamic Systems, (1998).
[20] Lebender, D., J. Muller and F. W. Schneider, “Control of Chemical Chaos and Noise : A Nonlinear Neural Net Based Algorithm,” J. Phys. Chem., 99, 4992 (1995).
[21] Lorenz, E. N., “Deterministic Nonperiodic Flow”, J. Atmos. Sci., 20, 130 (1963)
[22] May, R. M., “Simple Mathematical Models with Very Complicated Dynamics”, Nature., 261, 459 (1976)
[23] Pellegrini, L. and C. Tablino Possio, “A Non-Ideal CSTR: A High Codimension Bifurcation Analysis,” Chem. Eng. Sci., 51, 3151 (1996).
[24] Pellegrini, L. and G. Biardi, “Chaotic Behaviour of a Controled CSTR,” Computers chem. Engng., 14, 1237 (1990).
[25] Ray, W. H., “New Approaches to the Dynamics of Nonlinear Systems with Implications for Process and Control System Design ,” Chemical Process Control 2, D. E. Seborg and T. F. Edgar, eds. United Engineering Trustees, New York, USA, 245(1982).
[26] Rossler, O. E., “Different Types of Chaos in Two Simple Differential Equaions”, Z. Naturforschung., 31a, 1664 (1976)
[27] Ruelle, D. and R. Takens, “On the Nature of Turbulence,” Commun. Math. Phys., 20, 167 (1971).
[28] Russo, L. P. and B. W. Bequette, “Impact of Process Design on the Multiplicity Behavior of a Jacketed Exothermic CSTR,” AIChE, 41, 135 (1995).
[29] Seydel, R., “Practical Bifurcation and Stability Analysis : From Equilibrium to Chaos”, Springer, New York., (1994).
[30] Strozzi, F., J. M. Zaldivar, A. E. Kromberg and K. R. Westerterp, “On-line Runway Detection in Batch Reactors Using Chaos Theory Techniques,” AIChE, 45, 2429 (1999).
[31] Uppal, A., W. H. Ray and A. B. Poor, “On the Dynamic Behaviour of Continuous Stirred Tank Reactors,” Chem. Engng. Sci., 29, 967 (1974).