| 研究生: |
顏君婷 Yen, Chun-Ting |
|---|---|
| 論文名稱: |
探討一新穎熱休克蛋白質90之受質TRPM1在調控黑色素瘤生長之角色 Study the role of a novel HSP90 client protein, TRPM1 in regulating melanoma growth |
| 指導教授: |
陳立宗
Chen, Li-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 黑色素瘤 、BRAF抑制劑 、TRPM1 、HSP90抑制劑 、AUY922 |
| 外文關鍵詞: | melanoma, BRAF inhibitor, TRPM1, HSP90 inhibitor, AUY922 |
| 相關次數: | 點閱:127 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在將近50%左右的黑色素瘤病患當中都有發現致癌基因BRAF的突變,其中又有高達90%以上的突變都發生在第600個胺基酸位點,由纈胺酸(Valine)突變成麩胺酸(Glutamic acid)。臨床上針對這些有BRAFV600E突變的黑色素瘤患者可以使用BRAF抑制劑,但是當患者持續用藥大約6-12個月之後就會產生抗藥性
HSP90抑制劑的功效在許多癌症當中進行測試,並且已經進入臨床測試階段。第二代的HSP90抑制劑有抗腫瘤生長的功能,但在黑色素瘤仍然不明瞭,因此我們想要測試AUY922對於抑制黑色素癌的能力,進而找尋新的HSP90受質,探討此受質與黑色素癌的生長與抗藥性的產生是否有關。
本研究發現TRPM1為新穎HSP90的受質,AUY922能破壞TRPM1和HSP90之間的交互作用。我們也發現黑色素瘤細胞株確實有TRPM1 蛋白表現,而我們建立的BRAF抑制劑抗性的黑色素瘤細胞株(DR)會有比較高表現的。在TRPM1敲除之後會抑制黑色素瘤細胞株活性以及形成細胞群體的能力,透過抑制AKT訊號活化,增加caspase 3的活性,最後導致細胞凋亡。AUY922能降低TRPM1蛋白表現,亦會抑制黑色素瘤細胞株生長,使AKT失活而誘導細胞凋亡。此現象亦發生在BRAF抑制劑抗性的黑色素瘤細胞。我們進一步解開了AUY922調降TRPM1蛋白表現的分子機轉,發現AUY922不影響HSP90-HSP70、HSP70-TRPM1的交互作用, 但是AUY922破壞CDC37與HSP90的交互作用。我們也證實CDC37 shRNA的表達會調降TRPM1蛋白表現,由此可知CDC37調控了HSP90對於TRPM1的穩定。最後,由人類皮下腫瘤小鼠模式中證實,AUY922能降低腫瘤生長速度,並且能再次抑制Dabrafenib抗藥性腫瘤生長。
綜上所述,TRPM1是新穎HSP90的受質蛋白,對黑色素瘤生長非常重要。AUY922會破壞CDC37與HSP90複合物的交互作用, 而降低TRPM1蛋白, 促使細胞凋亡,抑制腫瘤生長。BRAF抑制劑和AUY922的合併療法仍須要進一步的臨床前測試,有機會能增進對黑色素瘤的控制。
The mutations of BRAF are found in approximately half of the melanoma patients. The BRAFV600E mutation is identified up to 90% of the BRAF mutations. The BRAF inhibitors have been shown high response rates and improve survival in melanoma patients with BRAFV600E mutation, but a majority of these patients develop drug resistance within 6-12 months. Thus, we try to find out the other drugs or protein targets for treating aggressive melanoma patients.
The HSP90 inhibitors (HSP90i) have under clinical evaluating for the treatments in different cancer types. AUY922, an HSP90i, has been tested in lung cancers, gastric cancers, breast cancers, and leukemia with modest anti-tumor activity. The anti-tumor activity of AUY922 hasn’t been demonstrated in melanoma yet, so we wonder the performance of AUY922 in melanoma. Moreover, we hope to identify a new HSP90 client protein which is responsible for the efficacy of AUY922 and overcome the resistance of BRAFi in melanoma.
We characterized that TRPM1 is a novel HSP90 client protein by AUY922 disrupted the interaction between HSP90 protein complex and TRPM1. The interactions between HSP90-HSP70 and HSP70-TRPM1 were not affected by AUY922 treatment. However, CDC37 was disassociated with HSP90 before the degradation of TRPM1 in response to AUY922. In addition, the TRPM1 protein was declined in CDC37-knockdown cells which suggested that CDC37 is important for the stability of TRPM1.
We found that TRPM1 was expressed in malignant melanoma cells and the Dabrafenib-resistance (DR) melanoma cell lines had a higher expression level of TRPM1. The knockdown of TRPM1 inhibited the cell viability and growth of melanoma cells by reducing the AKT activation. Therefore, caspase 3 was activated and promoted cell apoptosis. Similarly, AUY922 induced the degradation of TRPM1, inactivation of AKT, and cell apoptosis. Finally, the A375 xenograft animal models showed that AUY922 suppressed the growth of melanoma tumor and Dabrafenib-resistant tumor.
In summary, TRPM1 is a novel HSP90 client protein. TRPM1 is essential for the survival of melanoma. AUY922 decreases the TRPM1 expression, inhibits AKT signaling, promotes the cell apoptosis, and suppresses xenograft tumor growth. The anti-tumor effects of AUY922 on Dabrafenib-resistant tumor is an important finding that provides a rationale for evaluating the combination treatment of BRAFi and AUY922 in melanoma patients.
1. Losquadro, W.D., Anatomy of the Skin and the Pathogenesis of Nonmelanoma Skin Cancer. Facial Plast Surg Clin North Am, 2017. 25(3): p. 283-289.
2. Kern, F., T. Niault, and M. Baccarini, Ras and Raf pathways in epidermis development and carcinogenesis. Br J Cancer, 2011. 104(2): p. 229-34.
3. Baroni, A., et al., Structure and function of the epidermis related to barrier properties. Clin Dermatol, 2012. 30(3): p. 257-62.
4. Cichorek, M., et al., Skin melanocytes: biology and development. Postepy Dermatol Alergol, 2013. 30(1): p. 30-41.
5. Gupta, A.K., M. Bharadwaj, and R. Mehrotra, Skin Cancer Concerns in People of Color: Risk Factors and Prevention. Asian Pac J Cancer Prev, 2016. 17(12): p. 5257-5264.
6. Linares, M.A., A. Zakaria, and P. Nizran, Skin Cancer. Prim Care, 2015. 42(4): p. 645-59.
7. Fahradyan, A., et al., Updates on the Management of Non-Melanoma Skin Cancer (NMSC). Healthcare (Basel), 2017. 5(4).
8. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2019. CA Cancer J Clin, 2019. 69(1): p. 7-34.
9. Chiang, C.J., et al., Incidence and survival of adult cancer patients in Taiwan, 2002-2012. J Formos Med Assoc, 2016. 115(12): p. 1076-1088.
10. Guy, G.P., Jr., et al., Vital signs: melanoma incidence and mortality trends and projections - United States, 1982-2030. MMWR Morb Mortal Wkly Rep, 2015. 64(21): p. 591-6.
11. Glazer, A.M., et al., Clinical Diagnosis of Skin Cancer: Enhancing Inspection and Early Recognition. Dermatol Clin, 2017. 35(4): p. 409-416.
12. Rockberg, J., et al., Epidemiology of cutaneous melanoma in Sweden-Stage-specific survival and rate of recurrence. Int J Cancer, 2016. 139(12): p. 2722-2729.
13. Kozovska, Z., V. Gabrisova, and L. Kucerova, Malignant melanoma: diagnosis, treatment and cancer stem cells. Neoplasma, 2016. 63(4): p. 510-7.
14. Domingues, B., et al., Melanoma treatment in review. Immunotargets Ther, 2018. 7: p. 35-49.
15. Molina, J.R. and A.A. Adjei, The Ras/Raf/MAPK pathway. J Thorac Oncol, 2006. 1(1): p. 7-9.
16. Santarpia, L., S.M. Lippman, and A.K. El-Naggar, Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets, 2012. 16(1): p. 103-19.
17. Durrant, D.E. and D.K. Morrison, Targeting the Raf kinases in human cancer: the Raf dimer dilemma. Br J Cancer, 2018. 118(1): p. 3-8.
18. Yaeger, R. and R.B. Corcoran, Targeting Alterations in the RAF-MEK Pathway. Cancer Discov, 2019. 9(3): p. 329-341.
19. Inamdar, G.S., S.V. Madhunapantula, and G.P. Robertson, Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol, 2010. 80(5): p. 624-37.
20. Cheng, L., et al., Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod Pathol, 2018. 31(1): p. 24-38.
21. Long, G.V., et al., Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol, 2011. 29(10): p. 1239-46.
22. Holderfield, M., et al., Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer, 2014. 14(7): p. 455-67.
23. Savoia, P., et al., Targeting the ERK Signaling Pathway in Melanoma. Int J Mol Sci, 2019. 20(6).
24. Yang, H., et al., RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res, 2010. 70(13): p. 5518-27.
25. Chapman, P.B., et al., Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med, 2011. 364(26): p. 2507-16.
26. Grob, J.J., et al., Patient perception of the benefit of a BRAF inhibitor in metastatic melanoma: quality-of-life analyses of the BREAK-3 study comparing dabrafenib with dacarbazine. Ann Oncol, 2014. 25(7): p. 1428-36.
27. Zhang, W., BRAF inhibitors: the current and the future. Curr Opin Pharmacol, 2015. 23: p. 68-73.
28. Flaherty, K.T., et al., Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med, 2012. 367(2): p. 107-14.
29. Flaherty, K.T., et al., Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med, 2012. 367(18): p. 1694-703.
30. Sanchez, J.N., T. Wang, and M.S. Cohen, BRAF and MEK Inhibitors: Use and Resistance in BRAF-Mutated Cancers. Drugs, 2018. 78(5): p. 549-566.
31. Manning, B.D. and A. Toker, AKT/PKB Signaling: Navigating the Network. Cell, 2017. 169(3): p. 381-405.
32. Cassinelli, G., et al., Targeting the Akt kinase to modulate survival, invasiveness and drug resistance of cancer cells. Curr Med Chem, 2013. 20(15): p. 1923-45.
33. Garcia-Carbonero, R., A. Carnero, and L. Paz-Ares, Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol, 2013. 14(9): p. e358-69.
34. Lackie, R.E., et al., The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases. Front Neurosci, 2017. 11: p. 254.
35. Basso, A.D., et al., Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem, 2002. 277(42): p. 39858-66.
36. Calderwood, S.K., Cdc37 as a co-chaperone to Hsp90. Subcell Biochem, 2015. 78: p. 103-12.
37. Talaei, S., et al., Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des, 2019.
38. Nagaraju, G.P., et al., Inhibition of HSP90 overcomes resistance to chemotherapy and radiotherapy in pancreatic cancer. Int J Cancer, 2019.
39. Park, K.S., et al., HSP90 inhibitor, AUY922, debilitates intrinsic and acquired lapatinib-resistant HER2-positive gastric cancer cells. BMB Rep, 2018. 51(12): p. 660-665.
40. Soga, S., et al., Development of radicicol analogues. Curr Cancer Drug Targets, 2003. 3(5): p. 359-69.
41. Chatterjee, S. and T.F. Burns, Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int J Mol Sci, 2017. 18(9).
42. Kummar, S., et al., Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies. Eur J Cancer, 2010. 46(2): p. 340-7.
43. Gartner, E.M., et al., A phase II study of 17-allylamino-17-demethoxygeldanamycin in metastatic or locally advanced, unresectable breast cancer. Breast Cancer Res Treat, 2012. 131(3): p. 933-7.
44. Hendrickson, A.E., et al., A phase II study of gemcitabine in combination with tanespimycin in advanced epithelial ovarian and primary peritoneal carcinoma. Gynecol Oncol, 2012. 124(2): p. 210-5.
45. Pedersen, K.S., et al., Phase II trial of gemcitabine and tanespimycin (17AAG) in metastatic pancreatic cancer: a Mayo Clinic Phase II Consortium study. Invest New Drugs, 2015. 33(4): p. 963-8.
46. Graham, B., et al., The heat shock protein 90 inhibitor, AT13387, displays a long duration of action in vitro and in vivo in non-small cell lung cancer. Cancer Sci, 2012. 103(3): p. 522-7.
47. Ueno, T., et al., Strong anti-tumor effect of NVP-AUY922, a novel Hsp90 inhibitor, on non-small cell lung cancer. Lung Cancer, 2012. 76(1): p. 26-31.
48. Lee, H.G., et al., Hsp90 inhibitor SY-016 induces G2/M arrest and apoptosis in paclitaxel-resistant human ovarian cancer cells. Oncol Lett, 2017. 13(4): p. 2817-2822.
49. He, K., et al., Hsp90 inhibitors promote p53-dependent apoptosis through PUMA and Bax. Mol Cancer Ther, 2013. 12(11): p. 2559-68.
50. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
51. Wu, C.C. and S.B. Bratton, Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid Redox Signal, 2013. 19(6): p. 546-58.
52. Porter, A.G. and R.U. Janicke, Emerging roles of caspase-3 in apoptosis. Cell Death Differ, 1999. 6(2): p. 99-104.
53. Hein, A.L., M.M. Ouellette, and Y. Yan, Radiation-induced signaling pathways that promote cancer cell survival (review). Int J Oncol, 2014. 45(5): p. 1813-9.
54. Giulino-Roth, L., et al., Inhibition of Hsp90 Suppresses PI3K/AKT/mTOR Signaling and Has Antitumor Activity in Burkitt Lymphoma. Mol Cancer Ther, 2017. 16(9): p. 1779-1790.
55. Smyth, T., et al., Inhibition of HSP90 by AT13387 delays the emergence of resistance to BRAF inhibitors and overcomes resistance to dual BRAF and MEK inhibition in melanoma models. Mol Cancer Ther, 2014. 13(12): p. 2793-2804.
56. Eroglu, Z., et al., Combined BRAF and HSP90 Inhibition in Patients with Unresectable BRAF (V600E)-Mutant Melanoma. Clin Cancer Res, 2018. 24(22): p. 5516-5524.
57. Park, K.S., et al., The HSP90 inhibitor, NVP-AUY922, attenuates intrinsic PI3K inhibitor resistance in KRAS-mutant non-small cell lung cancer. Cancer Lett, 2017. 406: p. 47-53.
58. Wong, K.K., et al., The oncogenic roles of TRPM ion channels in cancer. J Cell Physiol, 2019.
59. Oancea, E. and N.L. Wicks, TRPM1: new trends for an old TRP. Adv Exp Med Biol, 2011. 704: p. 135-45.
60. Cheli, Y., et al., Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res, 2010. 23(1): p. 27-40.
61. Miller, A.J., et al., Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res, 2004. 64(2): p. 509-16.
62. Deeds, J., F. Cronin, and L.M. Duncan, Patterns of melastatin mRNA expression in melanocytic tumors. Hum Pathol, 2000. 31(11): p. 1346-56.
63. Brozyna, A.A., et al., TRPM1 (melastatin) expression is an independent predictor of overall survival in clinical AJCC stage I and II melanoma patients. J Cutan Pathol, 2017. 44(4): p. 328-337.
64. Lunavat, T.R., et al., BRAF(V600) inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc Natl Acad Sci U S A, 2017. 114(29): p. E5930-e5939.
65. Harper, J.W. and E.J. Bennett, Proteome complexity and the forces that drive proteome imbalance. Nature, 2016. 537(7620): p. 328-38.
66. Sallam, R.M., Proteomics in cancer biomarkers discovery: challenges and applications. Dis Markers, 2015. 2015: p. 321370.
67. Aslam, B., et al., Proteomics: Technologies and Their Applications. J Chromatogr Sci, 2017. 55(2): p. 182-196.
68. Zhu, H. and J. Qian, Applications of functional protein microarrays in basic and clinical research. Adv Genet, 2012. 79: p. 123-55.
69. Chandramouli, K. and P.Y. Qian, Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics, 2009. 2009.
70. Mann, M., R.C. Hendrickson, and A. Pandey, Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem, 2001. 70: p. 437-73.
71. Karpievitch, Y.V., et al., Liquid Chromatography Mass Spectrometry-Based Proteomics: Biological and Technological Aspects. Ann Appl Stat, 2010. 4(4): p. 1797-1823.
72. Pratt, W.B., et al., Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol, 2015. 55: p. 353-71.
73. Piri, N., et al., Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Prog Retin Eye Res, 2016. 52: p. 22-46.
74. Lis, A., U. Wissenbach, and S.E. Philipp, Transcriptional regulation and processing increase the functional variability of TRPM channels. Naunyn Schmiedebergs Arch Pharmacol, 2005. 371(4): p. 315-24.
75. Fujiwara, Y. and D.L. Minor, Jr., X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. J Mol Biol, 2008. 383(4): p. 854-70.
76. Xu, X.Z., et al., Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci U S A, 2001. 98(19): p. 10692-7.
77. Erickson, L.A., et al., TRPM1 (Melastatin-1/MLSN1) mRNA expression in Spitz nevi and nodular melanomas. Mod Pathol, 2009. 22(7): p. 969-76.
78. Davies, M.A., The role of the PI3K-AKT pathway in melanoma. Cancer J, 2012. 18(2): p. 142-7.
79. Cardone, M.H., et al., Regulation of cell death protease caspase-9 by phosphorylation. Science, 1998. 282(5392): p. 1318-21.
80. Jensen, M.R., et al., NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res, 2008. 10(2): p. R33.
81. Xu, W. and L. Neckers, Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res, 2007. 13(6): p. 1625-9.
82. Duncan, L.M., et al., Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res, 1998. 58(7): p. 1515-20.
83. Zhang, S., et al., Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev, 2017. 31(19): p. 1939-1957.
84. Sewduth, R.N., et al., The ubiquitin ligase PDZRN3 is required for vascular morphogenesis through Wnt/planar cell polarity signalling. Nat Commun, 2014. 5: p. 4832.
85. Zhiqi, S., et al., Human melastatin 1 (TRPM1) is regulated by MITF and produces multiple polypeptide isoforms in melanocytes and melanoma. Melanoma Res, 2004. 14(6): p. 509-16.
86. Vogel, C. and E.M. Marcotte, Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet, 2012. 13(4): p. 227-32.
87. Levy, C., et al., Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell, 2010. 40(5): p. 841-9.
88. Martemyanov, K.A. and A.P. Sampath, The Transduction Cascade in Retinal ON-Bipolar Cells: Signal Processing and Disease. Annu Rev Vis Sci, 2017. 3: p. 25-51.
89. Busselberg, D. and A.M. Florea, Targeting Intracellular Calcium Signaling ([Ca(2+)]i) to Overcome Acquired Multidrug Resistance of Cancer Cells: A Mini-Overview. Cancers (Basel), 2017. 9(5).
90. Lee, J.M., et al., Ion channels and transporters in cancer. 4. Remodeling of Ca(2+) signaling in tumorigenesis: role of Ca(2+) transport. Am J Physiol Cell Physiol, 2011. 301(5): p. C969-76.
91. Wen, L., et al., Regulation of Multi-drug Resistance in hepatocellular carcinoma cells is TRPC6/Calcium Dependent. Sci Rep, 2016. 6: p. 23269.
92. Divolis, G., et al., Differential effects of calcium on PI3K-Akt and HIF-1alpha survival pathways. Cell Biol Toxicol, 2016. 32(5): p. 437-49.
93. Gocher, A.M., et al., Akt activation by Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells. J Biol Chem, 2017. 292(34): p. 14188-14204.
94. Dai, W., et al., Calcium deficiency-induced and TRP channel-regulated IGF1R-PI3K-Akt signaling regulates abnormal epithelial cell proliferation. Cell Death Differ, 2014. 21(4): p. 568-81.
95. Wayne, N., P. Mishra, and D.N. Bolon, Hsp90 and client protein maturation. Methods Mol Biol, 2011. 787: p. 33-44.
96. Schopf, F.H., M.M. Biebl, and J. Buchner, The HSP90 chaperone machinery. Nat Rev Mol Cell Biol, 2017. 18(6): p. 345-360.
97. Taipale, M., et al., Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell, 2012. 150(5): p. 987-1001.
98. Kuravi, S., et al., CDC37 as a novel target for the treatment of NPM1-ALK expressing anaplastic large cell lymphomas. Blood Cancer J, 2019. 9(2): p. 14.
99. Gray, P.J., Jr., et al., Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer, 2008. 8(7): p. 491-5.
100. Chen, X., et al., DCZ3112, a novel Hsp90 inhibitor, exerts potent antitumor activity against HER2-positive breast cancer through disruption of Hsp90-Cdc37 interaction. Cancer Lett, 2018. 434: p. 70-80.
101. Augello, G., et al., Targeting HSP90 with the small molecule inhibitor AUY922 (luminespib) as a treatment strategy against hepatocellular carcinoma. Int J Cancer, 2019. 144(10): p. 2613-2624.
102. Xue, N., et al., Chaperone-mediated autophagy degradation of IGF-1Rbeta induced by NVP-AUY922 in pancreatic cancer. Cell Mol Life Sci, 2019.
103. Gild, M.L., et al., Destabilizing RET in targeted treatment of thyroid cancers. Endocr Connect, 2016. 5(1): p. 10-9.