| 研究生: |
黃慶祥 Huang, Ching-Hsiang |
|---|---|
| 論文名稱: |
三種鉻酸鹽(MCrO4, M:Ba,Pb,Sr)之高壓X光繞射與拉曼光譜研究 High-Pressure X-ray Diffraction and Raman Spectroscopy Studies of Three Chromates(MCrO4, M:Ba,Pb,Sr) |
| 指導教授: |
龔慧貞
Kung, Jennifer |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 鉻酸鹽 、鑽石高壓砧 、X光繞射 、高壓 、相變 |
| 外文關鍵詞: | chromate, diamond anvil cell, X-ray diffraction, high pressure, phase transition |
| 相關次數: | 點閱:89 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用鑽石高壓砧進行鉻酸鋇(重晶石結構)、鉻酸鉛(鉻鉛礦,獨居石結構)與鉻酸鍶(獨居石結構)等三種鉻酸鹽的高壓實驗,結果與前人研究進行比較並討論兩種體彈模量經驗公式的適用性。實驗首先是利用拉曼光譜儀測量樣本在高壓下的晶格振動模的變化,並以同步輻射X光粉末繞射方法探討樣本在高壓下的結構變化並定出其晶格參數。本研究將以三個樣本的實驗結果,來探討鉻酸鹽化合物在高壓下體彈模量、相變壓力與高壓相結構的系統性行為。
實驗的最高壓力為25 GPa,在此範圍內,X光繞射的實驗結果顯示三種鉻酸鹽都有發生結構相轉變(相變),其中鉻酸鍶的相變壓力最低,鉻酸鋇的相變壓力最高;三種樣本都有高、低壓相共存的過渡現象。其中鉻酸鋇的高壓相空間群判定為P21/m,在相變時,高低壓相的體積相差9%,鉻酸鋇的相變為一階可逆相變。在加壓過程中,三種鉻酸鹽的三軸壓縮均呈現不等量變化,其共同點是最難被壓縮的軸都在多面體與多面體共邊的方向上。鉻酸鋇、鉻酸鉛、鉻酸鍶三者的體彈模量分別定為53 (1) GPa、62(1) GPa及60(2) GPa。
拉曼光譜的實驗結果顯示鉻酸鋇的拉曼振動模變化趨勢在相變發生的9 GPa附近有不連續的現象,與鉻酸鋇的相變壓力相同。鉻酸鋇振動模的格留乃森參數平均數值為0.87。鉻酸鍶的拉曼振動模變化趨勢在9.5 GPa以及15 GPa呈現兩次的不連續性,其振動模的格留乃森參數平均數值為0.84。
本研究結果中,鉻酸鋇之相變行為與過去學者提出之相變趨勢理論吻合,而壓縮實驗結果並不支持過去學者所提出之體彈模量經驗公式,顯示這些經驗公式是否適用於本研究的鉻酸鹽類或是其他化合物,仍有待進一步的驗證或修正。
High-pressure Raman spectroscopic and X-ray diffraction experiments of three chromates were carried out in a diamond anvil cell up to 25 GPa. The goal is to determine the equation of states of the phases in this study. In addition, the mechanism of the phase transition is also inferred.
On the basis of the changes in the X-ray diffraction patterns and the variation of the lattice parameters with pressure, it is inferred that three chromates undergo reversible phase transition. The phase transition pressure of barium chromate is the highest of three chromates and strontium chromate is the lowest. The low pressure phase and high pressure phase of three chromates coexisted after phase transition. The phase transition of barium chromate is first-order transformation, the volume decreases 9% after phase transition. The phase transition of barium chromate is reflected by the splitting in the CrO4 vibration modes and the discontinuity in the slope of mode frequency verse pressure in the Raman observation. Strontium chromate has two discontinuities in the slope of mode frequency verse pressure at 9.5 GPa and 15 GPa, respectively. The mean Grüneisen parameter for barium chromate is 0.87. The mean Grüneisen parameter for strontium chromate is 0.84.
The three chromates show anisotropic compressibility along three crystallographic axes. In barium chromate, a axis is the most uncompressible axis, which corresponding to the direction with edge share between Cr-O tetrahedral and Ba-O polyhedral. In lead chromate and strontium chromate, c axis is the most uncompressible axis which corresponding to the direction with edge share between Cr-O tetrahedral and Pb-O(Sr-O) polyhedral.
The bulk modulus (K) of barium chromate is 53(1) GPa, the K value of lead chromate and strontium chromate is 62(1) GPa and 60(2) GPa, respectively.
中文部分
王秀如(1998)助熔法合成北投石晶體之研究,國立成功大學地球科學所碩士論文,共59頁。
余樹楨 (1987) 晶體之結構與性質,渤海堂文化事業有限公司,台北,共569頁。
李佩倫 (2000) BaSO4-PbSO4固溶系列之高溫高壓相變研究,國立成功大學地球科學所博士論文,共139頁。
黃怡禎譯 (2000) 礦物學,地球科學文教基金會,台北,共689頁。
黃慶祥 (1998) CaSO4-H2O系統內礦物之高壓相變研究,國立成功大學地球科學所碩士論文,共72頁。
許樹恩及吳泰伯(1993)X光繞射原理與材料結構分析,中國材料科學學會,台北,共587頁。
英文部分
Alia, J. M., Edwards, H. G. M., Fernandez A. and Prieto, M. (1999) Fourier transform Raman spectroscopic study of Ba(SO4)x(CrO4)1-x solid solution, J. Raman Spec., 30, 105-114.
Alia, J. M., Edwards, H. G.. M. and Garcia-Navarro, F. J. (1999) FT-Raman and powder XRD analysis of the Ba(SO4)x(CrO4)1-x solid solution, TALANTA, 50, 391-400.
Anderson, D. L. (1976) The 650 km mantle discontinuity, Geophys. Res. Lett., 3, 347-349.
Angel, R. J., Ross, N. L., Seifert, F. and Fliervoet, T. F. (1996) Structural characterization of a pentacoordinate silicon in a calcium silicate, Nature, 384, 441-444.
Angel, R. J. (2001) Equations of state. In Hazen, R.M., Downs, R.T. (Eds.), High-pressure, high-temperature crystal chemistry. Rev. Mineral. Geochem., 41, 35-60.
Bassett, W. A. (2009) Diamond anvil cell, 50th birthday, High Press. Res., 29, 163-186.
Bastide, J. P. (1987) Simplified systematic of the compounds ABX4 (X=O2-,F-) and possible evolution of their crystal-structure under pressure, J. Sol. State Chem., 71, 115-120.
Becker, U., Risthaus, P., Brandt, F. and Bosbach, D. (2006) Thermodynamic properties and crystal growth behavior of the hashemite (BaSO4-BaCrO4) solid solution, Chem. Geol., 225, 244 -255.
Brenier, A., Jia, G. and Tu, C. (2004) Raman lasers at 1.171 and 1.517 pm with self- frequency conversion in SrWO4 : Nd3+ crystal, J. Phys.: Con. Matt., 16, 9103-9108.
Bridgman, P. W. (1923) The compressibility of thirty metals as a function of temperature and pressure., Proc. Am. Acad. Art. Sci., 58, 165-242.
Brown, I. D. (1978) Bond valences-simple structure model for inorganic chemistry, Chem. SOC. Rev., 7, 359-376.
Brown, I. D. and Wu, K. K. (1976) Empirical parameters for calculating cation-oxygen bond valences, Acta Crystallogr., Sect. B, 32,1957-1959.
Chang, L. Y., Howie, R. A. and Russman, J. (1996) Rock-forming minerals, 5B: Non-silicates, 2nd, Longman, pp.4-38.
Chen, P., Wu, Q., Ding, Y. and Yuan, P. (2008) Synthesis of SrCrO4 nanostructures by onion inner-coat template and their optical properties, Bull. Matt. Sci., 31, 603-608.
Chen, Y. H., Huang, E. and Yu, S. C. (2010) Raman spectroscopy and X-ray diffraction studies on celestite, Phys. B-con. Matt., 405, 4386-4388.
Cheng, C. C. and Liu, L. G. (1997) High pressure phase transformations in aragonite-type carbonates, Phys. Chem. Minerals, 24, 149-157.
Crichton, W. A., Parise, J. B., Antao, S. M. and Grzechnik, A. (2005) Evidence for monazite-, barite-, and AgMnO4 (distorted barite)-type structures of CaSO4 at high pressure and temperature, Am. Mineral., 90, 22-27.
Effenberger, H., Pertlik, F. (1986) Four monazite type structures: comparison of SrCrO4, SrSeO4, PbCrO4 (crocoite), and PbSeO4, Z. Kris., 176, 75-83.
Errandonea, D. and Manjon, F. J. (2008) Pressure effects on the structural and electronic properties of ABX4 scintillating crystals, Prog. Mat. Sci., 53, 711-773.
Faure, N., Borel, C., Couchoud, M., Basset, G., Templier, R. and Wyon, C. (1996) Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2, Appl. Phys. B, 63, 593-598.
Forman, R. A., Piermarini, G. J., Barnett, J. D. and Block, S. (1972) Pressure measurement made by the utilization of ruby sharp-line luminescence, Science, 176, 284-285.
Frost, R. L. (2004) Raman microscopy of selected chromate minerals, J. Raman Spec., 35, 153-158.
Fukunaga, O. and Yamaoka, S. (1979) Phase-transformations in ABO4 type compounds under high- pressure, Phys. Chem. Minerals, 5, 167-177.
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. and Hausermann, D. (1996) Two-dimensional detector software: From real detector to idealised image or two-theta scan, High Press. Res., 14, 235-248.
Hazen, R. M. and Prewitt, C. T. (1977) Effects of temperature and pressure on interatomic distances in oxygen-based minerals. Am. Mineral., 62, 309-315.
Hazen, R. M. and Finger, L. W., Comparative Crystal Chemistry (Wiley, Chichester, 1982), pp.151–164;
Heinz, D. L. and Jeanloz, R. (1984) The equation of state of the gold calibration standard, J. Appl. Phys., 55, 885-893.
Jamieson, J. C., Fritz, J. N. and Manghnani, M. H. (1982) High-Pressure Research in Geophysics (Tokyo: Centre for Academic Publishing).
Klotz, S., Chervin, J. C., Munsch, P. and Marchand,G. L. (2009) Hydrostatic limits of 11 pressure transmitting media, J. Phys. D: Appl. Phys., 42, 075413.
Knight, K. S. (2000) A high temperature structural phase transition in crocoite (PbCrO4) at 1068 K, Mineral. Mag., 64(2), 291-300.
Kobayashi, M., Ishii, M., Usuki, Y. and Yahagi, H. (1993) Scintillation characteristics of PbWO4 single-crystal at room-temperature, Nuc. In. Meth. Phys. Res., A333, 429-433.
Larson, A. C. and Von Dreele, R. B. (2004) LANL Rep. 86, 748.
Lee, P. L., Huang, E. and Yu, S. C. (2003) High-pressure Raman and X-ray studies of barite,BaSO4, High Press. Res., 23, 439-450.
Lentz, A., Buchele, W. and Schollhorn, H. (1986) Crystal-growth from silica-gels and single-crystal structure of barium chromate, Crys. Res. Tech., 21, 827-833.
Lin, S., Yuan, Y., Wang, H., Jia, R., Yang, X. and Liu, S. (2009) Controllable synthesis and luminescence property of CePO4:Tb nanorods, J. Matt. Sci.: Matt. Elec., 20, 899-904.
Long, Y.W., Yang, L. X., Yu, S. J. et al., (2006) Crystal structural phase transition in CaCrO4 under high pressure, J. Phys.: Con. Matt., 18, 2421-2428.
Manjon, F. J., Errandonea, D. and Garro, N. et al. (2006) Lattice dynamics study of scheelite tungstates under high pressure I. BaWO4, Phys. Rev. B, 74, 144111.
Manjon, F. J., Errandonea, D. and Garro, N. et al., (2006) Lattice dynamics study of scheelite tungstates under high pressure II. PbWO4, Phys. Rev. B, 74, 144112.
Manjon, F. J., Errandonea, D. (2009) Pressure-induced structural phase transitions in materials and earth sciences, Phys. Stat. Sol. B, 246, 9-31.
Mao, H. K., Xu, J. and Bell, P. M. (1986) Calibration of the ruby pressure gauge to 800-Kbar under quasi-hydrostatic conditions, J. Geophys. Res., 91, 4673-4676.
Mao, H. K. and Hemley, R. J. (2007) The high-pressure dimension in earth and planetary science, PNAS, 104, 9114-9115.
McMillian, P. (1985) Vibration spectroscopy in the mineral sciences, Rev. Mineral., Min. Soc. Am., 14, 9-63.
Michael, B. (2007) Curve fitting in Raman and IR spectroscopy : Basic theory of line shape and applications, Ther. Fish. Sci.
Miyake, M., Minato, I., Morikawa, H. and Iwai, S. I. (1978) Crystal structures and sulfates force constants of barite, celestite and anglestite, Am. Mineral., 63, 506-510.
Nikl, M., Bohacek, P., Mihokova, N., Solovieva, N., Vedda, A., Martini, M., Pazzi, G. P., Fabeni, P., Kobayashi, M.and Ishii, M. (2002) Enhanced efficiency of PbWO4 : Mo,Nb scintillator, J. Appl. Phys., 91, 5041-5044.
Orenstein, J. and Millis, A. J. (2000) Advances in the physics of high-temperature superconductivity, Science, 288, 468-474.
Patel, A. R. and Bhat, H. L. (1971) Growth of barite group crystals by the flux evaporation method, J. Crys. Growth, 11, 166-170.
Schenker, R. P., Brunold, T. C. and Gudel, H. U. (1998) Synthesis and optical spectroscopy of MnO42- doped crystals of Cs2CrO4, SrCrO4, CsBr and CsI, In. Chem., 37, 918-927.
Seydoux-Guillaume, A. M., Wirth, R., Nasdala, L., Gottschalk, M., Montel, J. M. and Heinrich, W. (2002) An XRD, TEM and Raman study of experimentally annealed nature monazite, Phys. Chem. Minerals, 29, 240-253.
Shen, Y., Kumar, R. S., Pravica, M. and Nicol, M. F. (2004) Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells, Rev. Sci. In., 75, 4450-4454.
Spear, F. S., Pyle, J. M. and Cherniak, D. (2009) Limitations of chemical dating of monazite, Chem. Geol., 266, 218-230.
Voicu, G., Bardoux, M. and Stevensen, R. (2001) Lithostratigraphy, geochronology and gold metallogeny in the northern Guiana Shield, South America: a review, Ore Geol. Rev., 18, 211-236.
Wang, W., Xu, C., Zhen, L. and Shao, W. (2007) Single-crystalline PbCrO4 nanorods, J. Crys. Growth, 299, 86-93.
Weckhuysen B. M. and Wachs, I. E. (1996) Raman spectroscopy of supported chromium oxide catalysts - Determination of chromium-oxygen bond distances and bond orders, J. Chem. SOC., Far. Tran., 92, 1969 -1973.
Wilkins, R. (1971) Raman spectrum of crocoite, Mineral. Mag., 38, 249.
Yin, J. A., Zou, Z. G. and Ye, J. H. (2003) Photophysical and photocatalytic properties of new photocatalysts MCrO4 (M = Sr, Ba), Chem. Phys. Lett., 378, 24-28.