簡易檢索 / 詳目顯示

研究生: 王俊凱
Wang, Chun-Kai
論文名稱: 氮化鎵系列光電及微波元件之研究
The Study of Nitride-based Optoelectronics and Microwave Devices
指導教授: 蘇炎坤
Su, Yan-Kuin
張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 159
中文關鍵詞: 帶通紫外光檢測器氮氧化矽二氧化矽低頻雜訊光激化學氣相沉積法金氧半異質接面場效電晶體氮化鎵鎢化鈦金半金型紫外光檢測器
外文關鍵詞: SiNxOy, SiO2, photo-CVD, MOS-HFETs, TiW, W, band-pass UV photodetectors, low frequency noise, GaN, MSM UV photodetectors
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要為研製並分析氮化鎵材料系列光電及微波元件,其中可分為紫外光檢測器及金氧半場效電晶體兩大部分。
      首先在紫外光檢測器方面,鎢化鈦及鎢金屬的透明度在入射光波長為 300 nm 時分別可高達75.1%及65.4%。以鎢化鈦及鎢金屬製作出的金半金型紫外光檢測器最大峰值光響應分別為0.192 A/W 與0.15 A/W,相對的最大量子效率則分別為66.4%及51.8%。特別是元件在UV-B 波段的光響應,由於接觸電極透明度的大幅提升而獲得相當高的響應值,因此改善了原本ITO、TiN、RuO2 及IrO2 等透明金屬電極元件光響應在此波段範圍嚴重退化的缺點。另外,金半金型紫外光檢測器的低頻雜訊表現為1/f 型式,進而推算出元件的最低雜訊等效功率及最高檢測度則分別為1.987×10-10 W及6.365×109 cmHz0.5W-1。另一方面,我們利用p-Al0.1Ga0.9N 作為入射光子阻障層成功地研製出p-i-n 型的帶通紫外光檢測器,可以有效地檢測出UV-A 波段。其中以厚度為300 nm 的p-Al0.1Ga0.9N 光子阻障層顯示出最優越的帶通光響應圖,其光響應峰值為0.13 A/W,相對的量子效率為46%。另外,p-i-n 型帶通紫外光檢測器的低頻雜訊表現屬於熱雜訊,推算出元件的最高檢測度則為8.22×1013 cmHz0.5W-1。
      至於在氮化鋁鎵/氮化鎵金氧半異質接面場效電晶體方面,我們利用光激化學氣相沉積法成長出高品質的二氧化矽薄膜,有效地降低超過四個數量級的閘極漏電流。室溫下最大飽和電流、最大轉導值及閘極操作平台分別為633 mA/mm、90 mS/mm 及7.5V。即使在高溫300oC 的操作環境溫度下,仍保有相當合理的元件電特性,顯示出以光激化學氣相沉積二氧化矽作為金氧半場效電晶體的氧化絕緣層確實可以應用於嚴苛的操作環境下。此外,電晶體電特性在高溫下的退化現象主要機制是源自於載子的飽和速度隨著溫度升高而導致退化相關。
      關於場效電晶體元件低頻雜訊的分析,在線性區操作偏壓下,元件的雜訊表現為1/f 型式的雜訊,推算出虎克係數約為10-3。而且當閘極偏壓為-4V < Vgs < 0V 時,元件雜訊正比於Vgs-1,分析出雜訊的產生來源為閘極底下的通道區域。反觀當偏壓為0V < Vgs < 4V 時,元件雜訊與閘極電壓無關,此時雜訊產生於非閘極底下的通道區域。至於在飽和區方面,元件的雜訊表現屬於退化型1/f 的雜訊,並推測出元件雜訊產生的原因與氧化層內的缺陷狀態能量分佈有關。另外,我們也利用了氮化鋁鎵/氮化鎵/氮化鋁鎵雙異質接面結構確實地改善了之前結構在電特性及雜訊方面的表現,其中最大飽和電流及閘極操作平台分別可高達755 mA/mm 及8V,雜訊中的虎克係數可以大幅地降低至2.95×10-4。
      論文最後我們再利用光激化學氣相沉積法成功地成長出高品質的低溫氮氧化矽及室溫二氧化矽。低溫氮氧化矽的折射率介於1.65~1.7 之間,且表面粗操度的均方根值只有0.845 nm。以此氧化層製作出的電容具有極優越的崩潰電場,可高達13MV/cm,且具有相當低的介面狀態密度,為1.04×1011 cm-2eV-1。另外,室溫的二氧化矽薄膜也具有相當不錯的物理、化學及電特性。顯示出以光激化學氣相沉積的低溫氮氧化矽及室溫二氧化矽都非常地有潛力被應用於金氧半場效電晶體的氧化絕緣層。

     The main goal of this dissertation is the fabrications and analyses of nitride-based optoelectronics and microwave devices. Hence, the dissertationis divided into two parts, one is the investigation of nitride-based UV photodetectors, and the other is that of nitride-based metal-oxidesemiconductor heterostructure field effect transistors (MOS-HFETs).
     For metal-semiconductor-metal (MSM) UV photodetectors, two kinds of transparent electrodes, titanium tungsten (TiW) and tungsten (W) were studied. The transmittance of TiW and W were 75.1% and 65.4% at a wavelength of 300 nm, respectively. Then, the 0.192 A/W for TiW and 0.15
    A/W for W peak responsivity of our detectors corresponded to the maximum quantum efficiency of 66.4% and 51.8%, respectively, at 360 nm. It should be noted that transmittance of TiW and W films only decreased very slightly and improved the responsivity in the UV-B range compared with other transparent contact electrodes, such as ITO, TiN, RuO2, and IrO2. On the other hand, the noise behavior of MSM UV photodetectors was 1/f-type noise. The minimumnoise equivalent power (NEP) and maximum detectivity (D*) was calculated to be 1.987×10-10 W and 6.365×109 cmHz0.5W-1, respectively.
     In addition, the nitride-based p-i-n band-pass photodetectors with a p-Al0.1Ga0.9N blocking layer, which were designed to detect the UV-A range,
    were fabricated and characterized. The device with a 300 nm-thick p-Al0.1Ga0.9N layer showed the best characteristic for response. The peak responsivity was estimated to be around 0.13 A/W corresponding to a quantum efficiency of around 46%. On the other hand, the noise behavior of p-i-n band-pass photodetectors was thermal noise, and maximum D* was calculated to be 8.22×1013 cmHz0.5W-1.
     On the part of AlGaN/GaN MOS-HFETs by using photo-CVD SiO2 as gate oxide, the gate leakage current can be reduced by more than four orders of magnitude. Ids, max, gm, max, and gate voltage swing (GVS) were 633 mA/mm, 90 mS/mm, and 7.5V, respectively, at room temperature. Even at 300oC, the electrical characteristics of MOS-HFETs still remain relatively reasonably. Such a result indicated that the AlGaN/GaN MOS-HFETs with photo-CVD SiO2 films was highly potential for application in hash environment. Furthermore, the temperature-induced degradation of saturation velocity was predominantly responsible for the degradation mechanisms of Ids,max and gm,max.
     Low frequency noise of AlGaN/GaN MOS-HFETs with photo-chemical vapor deposition (photo-CVD) SiO2 gate oxide was fitted well by the 1/f law up to 1 kHz in the linear region. The Hooge’s coefficient α was estimated to be around 10-3. The normalized noise power density of the MOS-HFETs was proportional to Vgs-1 when -4V < Vgs < 0V, and was independent of the gatevoltage when 0V < Vgs < 4V, and the devices noise were contributed from the gated and un-gated region, respectively. On the other hand, the noise behavior in the saturation region was degenerated 1/f-type noise. The 1/fΓ noise characteristics and Γ value were affected by the interface state distribution in the energy band-gap as the gate bias varied in the saturation region. Furthermore, the electrical and noise characteristics were improved by using AlGaN/GaN/AlGaN double heterostructure, which showed Ids, max, GVS, and α were 755 mA/mm, 8V, and 2.95×10-4, respectively.
     We also reported low temperature photo-CVD SiNxOy layers and room temperature photo-CVD SiO2 onto GaN/sapphire templates. The refractive index for photo-CVD SiNxOy was 1.65~1.7. The 0.845 nm RMS roughness observed from the photo-CVD SiNxOy layer was much smoother than that observed from photo-CVD SiO2 layer grown at 300oC. The breakdown field of the capacitors with photo-CVD SiNxOy could reach 13 MV/cm. The interface state density at the SiNxOy/GaN interface was also found to be reasonably low, which was 1.04×1011 cm-2eV-1. Furthermore, the quality of Al/room temperature photo-CVD SiO2/GaN capacitors was also reasonably good for application. These properties suggested that the low temperature photo-CVD SiNxOy and room temperature photo-CVD SiO2 were potentially
    useful in nitride-based MIS-FETs and MIS-HFETs.

    Abstract (in Chinese) --------------------------------------------------------------- I Abstract (in English) -------------------------------------------------------------- III Acknowledgements ---------------------------------------------------------------- VI Contents ----------------------------------------------------------------------------- VII Table Captions ---------------------------------------------------------------------- IX Figure Captions --------------------------------------------------------------------- X Chapter 1. Introduction 1-1. Background and Motivation ------------------------------------------ 1 1-2. Organization of This Dissertation ------------------------------------ 3 Chapter 2. Fabrication and Characteristics of Nitride-based Metal-Semiconductor-Metal (MSM) UV Photodetectors and P-i-N Band-pass UV Phototdetectors 2-1. The Basic Theory of Photodetectors --------------------------------- 8 2-2. The Fabrication and Characteristics of GaN MSM UV Photodetectors with TiW and W Transparent Electrodes -------- 14 2-3. The Fabrication and Characteristics of Nitride-based P-i-N Band-pass UV Photodetectors --------------------------------------- 24 2-4. Summary --------------------------------------------------------------- 30 Chapter 3. Fabrication and Characteristics of Nitride-based Metal-Oxide-Semiconductor Heterostructure Field Effect Transistors (MOS-HFETs) with Photo-chemical Vapor Deposition (Photo-CVD) SiO2 Layer 3-1. Introduction of Piezoelectric and Spontaneous Polarization for Nitride-based HFETs ------------------------------------------------- 59 3-2. The Analysis of Designed Structure -------------------------------- 62 3-3. The Fabrication of AlGaN/GaN MOS-HFETs -------------------- 64 3-4. The Characteristics of AlGaN/GaN MOS-HFETs ---------------- 65 3-5. Summary --------------------------------------------------------------- 70 Chapter 4. Low Frequency Noise Analysis of Nitride-based MOS-HFETs with Photo-CVD SiO2 Layer 4-1. The Type of Low Frequency Noise --------------------------------- 87 4-2. Low Frequency Noise Sources in AlGaN/GaN MOS-HFETs -- 93 4-3. Low Frequency Noise of AlGaN/GaN MOS-HFETs in the Saturation Region ----------------------------------------------------- 99 4-4. The Effect of Drain-Source Voltage in Low Frequency Noise of AlGaN/GaN MOS-HFETs ----------------------------------------- 100 4-5. Low Frequency Noise of AlGaN/GaN/AlGaN Double Heterostructure MOS-HFETs -------------------------------------- 101 4-6. Summary -------------------------------------------------------------- 104 Chapter 5. Fabrication and Characteristics of GaN Metal-Insulator-Semiconductor (MIS) Capacitors Grown by Photo-CVD System 5-1. The Defects and Transport Mechanism of MIS Capacitors ---- 124 5-2. Photo-CVD System ------------------------------------------------- 127 5-3. GaN MIS Capacitors with Room Temperature Photo-CVD SiO2 Layer and Low Temperature Photo-CVD SiNxOy Layer ------- 128 5-4. Summary -------------------------------------------------------------- 136 Chapter 6. Conclusion and Future Work 6-1. Conclusion ------------------------------------------------------------ 153 6-2. Future Work ---------------------------------------------------------- 156 VITA Publication List

    Chapter 1
    [1] E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Calle, and J. F.
    Hochedez, “Assessment of GaN metal-semiconductor-metal photodiodes
    for high-energy ultraviolet photodetection”, Appl. Phys. Lett., Vol. 80, No.
    17, pp. 3198-3200, 2002.
    [2] E. Monroy, F. Calle, E. Muñoz, and F. Omnès, “AlGaN
    metal-semiconductor-metal photodiodes”, Appl. Phys. Lett., Vol. 74, No.
    22, pp. 3401-3403, 1999.
    [3] T. Palacios, E. Monroy, F. Calle, and F. Omnes, “High-responsivity
    submicron metal-semiconductor-metal ultraviolet detectors”, Appl. Phys.
    Lett., Vol. 81, No. 10, pp. 1902-1904, 2002.
    [4] J. Lia, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, “Picosecond response
    of gallium-nitride metal-semiconductor-metal photodetectors”, Appl. Phys.
    Lett., Vol. 84, No. 12, pp. 2091-2093, 2004.
    [5] J. L. Pau, C. Rivera, E. Munoz, E. Calleja, U. Schuhle, E. Frayssinet, B.
    Beaumont, J. P. Faurie, and P. Gibart, “Response of ultra-low dislocation
    density GaN photodetectors in the near- and vacuum-ultraviolet”, J. Appl.
    Phys., Vol. 95, No. 12, pp. 8275-8279, 2004.
    [6] K. Kheng, M. Ramsteiner, H. Schneider, J. D. Ralston, F. Fuchs, and P.
    Koidl, “Two-color GaAs/(AlGa)As quantum well infrared detector with
    voltage-tunable spectral sensitivity at 3-5 and 8-12 µm”, Appl. Phys. Lett.,
    Vol. 61, No. 6, pp. 666-668, 1992.
    [7] W. Q. Li, M. Karakucuk, P. N. Freeman, J. R. East, G. I. Haddad, and P. K.
    Bhattacharya, “High-speed Al0.2Ga0.8As/GaAs multi-quantum-well
    phototransistors with tunable spectral response”, IEEE Electron Device
    Lett., Vol. 14, No. 7, pp. 335-337, 1993.
    [8] J. C. Chiang, S. S. Li, M. Z. Tidrow, P. Ho, M. Tsai, and C. P. Lee, “A
    voltage-tunable multicolor triple-coupled InGaAs/GaAs/AlGaAs
    quanyum-well infrared photodetector for 8-12 µm detection”, Appl. Phys.
    Lett., Vol. 69, No. 16, pp. 2412-2414, 1996.
    [9] X. Jiang, S. S. Li, and M. Z. Tidrow, “Investigation of a multistack
    voltage-tunable four-color quantum-well infrared photodetector for midand
    long-wavelength infrared detection”, IEEE J. Quantum Electron., Vol.
    35, No. 11, pp. 1685-1692, 1999.
    [10] A. Majumdar, K. K. Choi, J. L. Reno, and D. C. Tsui, “Voltage tunable
    two-color infrared detection using semiconductor superlattices”, Appl.
    Phys. Lett., Vol. 83, No. 25, pp. 5130-5132, 2003.
    [11] A. Koudymov, G. Simin, M. A. Khan, A. Tarakji, R. Gaska, and M. S.
    Shur, “Dunamic current-voltage characteristics of III-N HFETs”, IEEE
    Electron Device Lett., Vol. 24, No. 11, pp. 680-682, 2003.
    [12] C. Q. Chen, J. P. Zhang, V. Adivarahan, A. Koudymov, H. Fatima, G.
    Simin, J. Yang, and M. A. Khan, “AlGaN/GaN/AlGaN double
    heterostructure for high-power III-N field-effect transistors”, Appl. Phys.
    Lett., Vol. 82, No. 25, pp. 4593-4595, 2003.
    [13] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S.
    Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field
    effect transistor”, IEEE Electron Device Lett., Vol. 21, No. 2, pp. 63-65,
    2000.
    [14] E. M. Chumbes, J. A. Smart, T. Prunty, and J. R. Shealy, “Microwave
    performance of AlGaN/GaN metal insulator semiconductor field effect
    transistors on sapphire substrates”, IEEE Tran. Electron Devices, Vol. 48,
    No. 3, pp. 416-419, 2001.
    [15] G. Simin, X. Hu, N. Ilinskaya, J. Zhang, A. Tarakji, A. Kumar, J. Yang,
    M. A. Khan, R. Gaska, and M. S. Shur, “Large periphery high-power
    AlGaN/GaN metal-oxide-semiconductor heterostructure field effect
    transistors on SiC with oxide-bridging”, IEEE Electron Device Lett., Vol.
    22, No. 2, pp. 53-55, 2001.
    Chapter 2
    [1] O. M. Nayfeh, S. Rao, A. Smith, J. Therrien, and M. H. Nayfeh, “Thin
    film silicon nanoparticle UV photodetector”, IEEE Photonics Technol.
    Lett., Vol. 16, No. 8, pp. 1927-1929, 2004.
    [2] F. Yan, X. Xin, S. Aslam, Y. Zhao, D. Franz, J. H. Zhao, and M. Weiner,
    “4H-SiC UV photo detectors with large area and very high specific
    detectivity”, IEEE J. Quantum Electron., Vol. 40, No. 9, pp. 1315-1320,
    2004.
    [3] T. K. Lin, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. K. Wang, C. M. Chang,
    and B. R. Huang, “ZnSe homoepitaxial MSM photodetectors with
    transparent ITO contact electrodes”, IEEE Trans. Electron Devices, Vol.
    52, No. 1, pp. 121-123, 2005.
    [4] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C. S.
    Chang, “High detectivity InGaN-GaN multiquantum well p-n junction
    photodiodes”, IEEE J. Quantum Electron., Vol. 39, No. 5, pp. 681-685,
    2003.
    [5] E. Monroy, E. Munoz, F. J. S´anchez, F. Calley, E. Calleja, B. Beaumont,
    P. Gibart, J. A. Munoz, and F. Cusso, “High-performance GaN p-n
    junction photodetectors for solar ultraviolet applications”, Semicond. Sci.
    Technol., Vol. 13, No. 9, pp. 1042-1046, 1998.
    [6] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoc¸ G.
    Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “High
    speed, low noise ultraviolet photodetectors based on GaN p-i-n and
    AlGaN(p)-GaN(i)-GaN(n) structures”, Appl. Phys. Lett., Vol. 71, No. 15,
    pp. 2154-2156, 1997.
    [7] N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, “Solar-blind
    AlGaN-based p-i-n photodiodes with low dark current and high
    detectivity”, IEEE Photonics Technol. Lett., Vol. 16, No. 7, pp.
    1718-1720, 2004.
    [8] N. Biyikli, I. Kimukin, T. Tut, T. Kartaloglu, O. Aytur, and E. Ozbay,
    “High-speed characterization of solarblind AlxGa1-xN p-i-n photodiodes”,
    Semicond. Sci. Technol., Vol. 19, No. 11, pp. 1259-1262, 2004.
    [9] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini,
    S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa,
    “High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors
    on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., Vol. 75, No. 2,
    pp. 247-249, 1999.
    [10] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D.
    Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet
    photodetectors”, Appl. Phys. Lett., Vol. 71, No. 16, pp. 2334-2336, 1997.
    [11] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Anisotropy in
    detectivity of GaN Schottky ultraviolet detectors: comparing lateral and
    vertical geometry”, Appl. Phys. Lett., Vol. 80, No. 3, pp. 347-349, 2002.
    [12] V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, M. A. Khan, N. Pala, M.
    Shur, and R. Gaska, “SiO2-passivated lateral-geometry GaN transparent
    Schottky-barrier detectors”, Appl. Phys. Lett., Vol. 77, No. 6, pp.
    863-865, 2000.
    [13] O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface
    trapping in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., Vol.
    84, No. 20, pp. 4092-4094, 2004.
    [14] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain
    mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., Vol.
    79, No. 10, pp. 1417-1419, 2001.
    [15] E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Calle, and J. F.
    Hochedez, “Assessment of GaN metal-semiconductor-metal photodiodes
    for high-energy ultraviolet photodetection”, Appl. Phys. Lett., Vol. 80,
    No. 17, pp. 3198-3200, 2002.
    [16] M. Mosca, J. L. Reverchon, F. Omnes, and J. Y. Duboz, “Effects of the
    buffer layers on the performance of (Al,Ga)N ultraviolet Photodetectors”,
    Appl. Phys. Lett., Vol. 95, No. 8, pp. 4367-4370, 2004.
    [17] Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang, and J. K. Sheu, “GaN
    and InGaN metal-semiconductor-metal photodetectors with different
    Schottky contact metals”, Jpn. J. Appl. Phys., Vol. 40, No. 4B, pp.
    2996-2999, 2001.
    [18] T. Palacios, E. Monroy, F. Calle, and F. Omnes, “High-responsivity
    submicron metal-semiconductor-metal ultraviolet detectors”, Appl. Phys.
    Lett., Vol. 81, No. 10, pp. 1902-1904, 2002.
    [19] J. Lia, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, “Picosecond response
    of gallium-nitride metal-semiconductor-metal photodetectors”, Appl.
    Phys. Lett., Vol. 84, No. 12, pp. 2091-2093, 2004.
    [20] J. L. Pau, C. Rivera, E. Munoz, E. Calleja, U. Schuhle, E. Frayssinet, B.
    Beaumont, J. P. Faurie, and P. Gibart, “Response of ultra-low dislocation
    density GaN photodetectors in the near- and vacuum-ultraviolet”, J. Appl.
    Phys., Vol. 95, No. 12, pp. 8275-8279, 2004.
    [21] Y. Z. Chiou, J. R. Chiou, Y. K. Su, S. J. Chang, B. R. Huang, C. S.
    Chang, and Y. C. Lin, “The characteristics of different transparent
    electrodes on GaN photodetectors”, Mater. Chem. Phys., Vol. 80, No. 1,
    pp. 201-204, 2003.
    [22] Y. Z. Chiou, and J. J. Tang, “GaN photodetectors with transparent indium
    tin oxide electrodes”, Jpn. J. Appl. Phys., Vol. 43, No. 7A, pp.
    4146-4149, 2004.
    [23] C. K. Wang, S. J. Chang, Y. K. Su, C. S. Chang, Y. Z. Chiou, C. H. Kuo,
    T. K. Lin, T. K. Ko, and J. J. Tang, “GaN MSM photodetectors with TiW
    transparent electrodes”, Mater. Sci. Eng. B., Vol. 112, No. 1, pp. 25-29,
    2004.
    [24] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J.
    K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet
    photodetectors with transparent indium-tin-oxide Schottky contacts”,
    IEEE Photonics Technol. Lett., Vol. 13, No. 8, pp. 848-850, 2004.
    [25] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, Y.
    C. Lin, and C. H. Chen, “Transparent TiN electrodes in GaN
    metal-semiconductor-metal ultraviolet photodetectors”, Jpn. J. Appl.
    Phys., Vol. 41, No. 6A, pp. 3643-3645, 2002.
    [26] J. K. Kim, and J. L. Lee, “GaN MSM ultraviolet photodetectors with
    transparent and thermally stable RuO2 and IrO2 Schottky contacts”, J.
    Electrochem. Soc., Vol. 151, No. 3, pp. G190-G195, 2004.
    [27] J. K. Kim, H. W. Jang, C. M. Jeon, and J. L. Lee, “GaN
    metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky
    contact”, Appl. Phys. Lett., Vol. 71, No. 18, pp. 4655-4657, 2002.
    [28] H. Norde, “A modified forward I-V plot for Schottky diodes with high
    series resistance”, J. Appl. Phys., Vol. 50, No. 7, pp. 5052-5053, 1979.
    [29] K. E. Bohlin, “Generalized Norde plot including determination of the
    ideality factor”, J. Appl. Phys., Vol. 60, No. 3, pp. 1223-1224, 1986.
    [30] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo,
    Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu,
    “Nitride-based LEDs with an SPS tunneling contact layer and an ITO
    transparent contact”, IEEE Photonics Technol. Lett., Vol. 16, No. 4, pp.
    1002-1004, 2004.
    [31] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P.
    Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, and J. K. Sheu, “High
    brightness InGaN green LEDs with an ITO on n++-SPS upper contact”,
    IEEE Trans. Electron Devices, Vol. 50, No. 11, pp. 2208-2212, 2003.
    [32] L. W. Wu, S. J. Chang, Y. K. Su, T. Y. Tsai, T. C. Wen, C. H. Kuo, W. C.
    Lai, J. K. Sheu, J. M. Tsai, S. C. Chen, and B. R. Huang, “InGaN/GaN
    LEDs with a Si-doped InGaN/GaN short-period superlattice tunneling
    contact layer”, J. Electron. Mater., Vol. 32, No. 5, pp. 411-414, 2003.
    [33] C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. F. Chen, J. K. Sheu, and J.
    M. Tsai, “GaN-based light emitting diodes with Si-doped
    In0.23Ga0.77N/GaN short period superlattice current spreading layer “, Jpn.
    J. Appl. Phys., Vol. 42, No. 4B, pp. 2270-2272, 2003.
    [34] C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. F. Chen, J. K. Sheu, and J.
    M. Tsai, “Nitride-based light emitting diodes with Si-doped
    In0.23Ga0.77N/GaN short period superlattice tunneling contact layer”,
    IEEE Trans. Electron Devices, Vol. 50, No. 2, pp. 535-537, 2003.
    [35] D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R.
    Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of
    epitaxial AlGaN films and their temperature dependence”, J. Appl. Phys.,
    Vol. 82, No. 10, pp. 5090-5096, 1997.
    [36] J. F. Muth, J. D. Brown, M. A. L. Johnson, Zhonghai Yu, R. M. Kolbas,
    J.W. Cook, and J. F. Schetzina, “Absorption coefficient and refractive
    index of GaN, AlN and AlGaN alloys”, MRS Internet J. Nitride
    Semicond. Res., Vol. 4S1, No. G5.2, 1999.
    [37] L. Ting, D. J. H. Lambert, M. M. Wong, C. J. Collins, B. Yang, A. L.
    Beck, U. Chowdhury, R. D. Durpuis, and J. C. Campbell, “Low-noise
    back-illuminated AlxGa1-xN-based p-i-n solar-blind ultraviolet
    photodetectors,” IEEE J. Quantum Electron., Vol. 37, No. 4, pp. 538-545,
    2001.
    [38] C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, and I.
    Akasaki, “Solar-blind UV photodetectors based on GaN/AlGaN p-i-n
    photodiodes”, Jpn. J. Appl. Phys., Vol. 39, No. 5A, pp. L387-L389,
    2000.
    Chpater 3
    [1] E. M. Chumbes, J. A. Smart, T. Prunty, and J. R. Shealy, “Microwave
    performance of AlGaN/GaN metal insulator semiconductor field effect
    transistors on sapphire substrates”, IEEE Tran. Electron Devices, Vol. 48,
    No. 3, pp. 416-419, 2001.
    [2] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca,
    S. J. Pearton, and C. R. Abernathy, “Effect of temperature on
    Ga2O3(Gd2O3)/GaN metal-oxide-semiconductor field-effect transistors”,
    Appl. Phys. Lett., Vol. 73, No. 26, pp. 3893-3895, 1998.
    [3] J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R.
    Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo,
    “Gd2O3/GaN metal-oxide-semiconductor field-effect transistor”, Appl.
    Phys. Lett., Vol. 77, No. 20, pp. 3230-3232, 2000.
    [4] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S.
    Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect
    transistor”, IEEE Electron Device Lett., Vol. 21, No. 2, pp. 63-65, 2000.
    [5] G. Simin, A. Koudymov, H. Fatima, J. Zhang, J. Yang, M. A. Khan, X.
    Hu, A. Tarakji, R. Gaska, and M. S. Shur, “SiO2/AlGaN/InGaN/GaN
    MOSDHFETs”, IEEE Electron Device Lett., Vol. 23, No. 8, pp. 458-460,
    2002.
    [6] G. Simin, X. Hu, N. Ilinskaya, J. Zhang, A. Tarakji, A. Kumar, J. Yang, M.
    A. Khan, R. Gaska, and M. S. Shur, “Large periphery high-power
    AlGaN/GaN metal-oxide-semiconductor heterostructure field effect
    transistors on SiC with oxide-bridging”, IEEE Electron Device Lett., Vol.
    22, No. 2, pp. 53-55, 2001.
    [7] T. S. Lay, M. Hong, J. Kuo, J. P. Mannaerts, W. H. Hung, and D. J. Huang,
    “Energy-band parameters at the GaAs- and GaN-Ga2O3(Gd2O3)
    interfaces”, Solid-State Electron., Vol. 45, No. 9, pp. 1679-1782, 2001.
    [8] Y. Nakano, T. Kachi, and T. Jimbo, “Characteristics of SiO2/n-GaN
    interfaces with β-Ga2O3 interlayers”, Appl. Phys. Lett., Vol. 83, No. 21, pp.
    4336-4338, 2003.
    [9] B. P. Gila, J. Kim, B. Luo, A. Onstine, W. Johnson, F. Ren, C. R.
    Abernathy, and S. J. Pearton, “Advantages and limitations of MgO as a
    dielectric for GaN”, Solid-State Electron., Vol. 47, No. 12, pp. 2139-2142,
    2003.
    [10] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D.
    H. Shin, C. H. Lee, and K. S. Chung, “GaN metal-oxide-semiconductor
    structures using Ga-oxide dielectrics formed by photoelectrochemical
    oxidation”, Appl. Phys. Lett., Vol. 80, No. 3, pp. 446-448, 2002.
    [11] K. Matocha, R. J. Gutmann, and T. P. Chow, “Effect of annealing on
    GaN-insulator interfaces characterized by metal-insulatorsemiconductor
    capacitors”, IEEE Trans. Electron Devices, Vol. 50, No. 5,
    pp. 1200-1204, 2003.
    [12] M. Hong, K. A. Anselm, J. Kwo, H. M. Ng, J. N. Baillageon, A. R.
    Kortan, J. P. Mannaerts, A. Y. Cho, C. M. Lee, J. I. Chyi, and T. S. Lay,
    “Properties of Ga2O3(Gd2O3)/GaN metal-insulator-semiconductor
    diodes”, J. Vac. Sci. Technol. B, Vol. 18, No. 3, pp. 1453-1456, 2000.
    [13] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno,
    “Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator-semiconductor
    interfaces with low interface state density”, Appl. Phys. Lett., Vol. 73, No.
    6, pp. 809-811, 1998.
    [14] B. Gaffey, Louis J. Guido, X. W. Wang, and T. P. Ma, “High-quality
    oxide/nitride/oxide gate insulator for GaN MIS structures”, IEEE Trans.
    Electron Devices, Vol. 48, No. 3, pp. 458-464, 2001.
    [15] K. M. Chang, C. C. Cheng, and C. C. Lang, “Electrical properties of
    SiN/GaN MIS diodes formed by ECR-CVD”, Solid-State Electron., Vol.
    46, No. 9, pp. 1399-1403, 2002.
    [16] S. J. Chang, Y. K. Su, Y. Z. Chiou, J. R. Chiou, B. R. Huang, C. S. Chang,
    and J. F. Chen, “Deposition of SiO2 layers on GaN by photo chemical
    vapor deposition”, J. Electrochem. Soc., Vol. 150, No. 2, pp. C77-C80,
    2003.
    [17] A. Bykhovski, B. L. Gelmont, and M. S. Shur, “Elastic strain relaxation
    and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN
    superlattices”, J. Appl. Phys., Vol. 81, No. 9, pp. 6332-6338, 1997.
    [18] P. M. Asbeck, E. T. Yu, S. S. Lau, G. J. Sullivan, J. Van Hove, and J. M.
    Redwing, “Piezoelectric charge densities in AlGaN/GaN HFETs”,
    Electron. Lett., Vol. 33, No. 14, pp, 1230-1231, 1997.
    [19] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S.
    Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN
    heterostructure field-effect transistors”, Appl. Phys. Lett., Vol. 71, No. 19,
    pp. 2794-2796, 1997.
    [20] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy,
    W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W.
    Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by
    spontaneous and piezoelectric polarization charges in N- and Ga-face
    AlGaN/GaN heterostructures”, J. Appl. Phys., Vol. 85, No. 6, pp.
    3222-3233, 1999.
    [21] T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano, and I. Akasaki,
    “Optical properties of strained AlGaN and GaInN on GaN”, Jpn. J. Appl.
    Phys., Vol. 36, No. 2B, pp. L177-L179, 1997.
    [22] A. Hangleiter, J. S. Im, H. Kollmer, S. Heppel, J. Off, and F. Scholz,
    “The role of piezoelectric fields in GaN-based quantum wells”, MRS
    Internet J. Nitride Semicond. Res., Vol. 3, No. 15, 1998.
    [23] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization
    and piezoelectric constants of III-V nitrides”, Phys. Rev. B, Vol. 56, No.
    16, pp. 10024-10027, 1997.
    [24] Y. Z. Chiou, Y. K. Su, and S. J. Chang, “The study of nitride-based filed
    effect transistors and photodetectors”, 國立成功大學博士論文, 2003.
    [25] U. V. Bhapkar, and M. S. Shur, “Monte Carlo calculation of
    velocity-field characteristics of wurtzite GaN”, J. Appl. Phys., Vol. 82,
    No. 4, pp. 1649-1655, 1997.
    [26] M. Levinshtein, S. Rumyantsev, and M. S. Shur, editors, “Properties of
    advanced semiconductor material: GaN, AlN, InN, BN, SiC, SiGe”, NY:
    John Wiley & Sons; 2001.
    [27] S. M. Sze, “Physics of Semiconductor Devices”, 2nd ed. New York: Wiley,
    1981.
    [28] C. A. Liechti, “Microwave Field-Effect Transistors—1976”, IEEE Trans.
    Microwave Theory Tech., Vol. 24, No. 6, pp. 279-300, 1976.
    [29] V. Adivarahan, M. Gaevski, W. H. Sun, H. Fatima, A. Koudymov, S.
    Saygi, G. Simin, J. Yang, M. A. Khan, A. Tarakji, M. S. Shur, and R.
    Gaska, “Submicron gate Si3N4/AlGaN/GaN metal-insulatorsemiconductor
    heterostructure field-effect transistors”, IEEE Electron
    Device Lett., Vol. 24, No. 9, pp. 541-543, 2003.
    [30] T. Hashizume, S. Ootomo, and H. Hasegawa, “Al2O3-based surface
    passivation and insulated gate structure for AlGaN/GaN HFETs”, Phys.
    Stat. Sol. (c), Vol. 0, No. 7, pp. 2380-2384, 2003.
    [31] K. Balachander, S. Arulkumaran, T. Egawa, Y. Sano, and K. Baskar,
    “Demonstration of AlGaN/GaN metal-oxide-semiconductor highelectron-
    mobility transistors with silicon-oxy-nitride as the gate
    insulator”, Mater. Sci. Eng. B, Vol. 119, No. 1, pp. 36-40, 2005.
    [32] R. Mehandru, B. Luo, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R.
    Abernathy, S. J. Pearton, D. Gotthold, R. Birkhahn, B. Peres, R. Fitch, J.
    Gillespie, T. Jenkins, J. Sewell, D. Via, and A. Crespo, “AlGaN/GaN
    metal-oxide-semiconductor high electron mobility transistors using
    Sc2O3 as the gate oxide and surface passivation”, Appl. Phys. Lett., Vol.
    82, No. 15, pp. 2530-2532, 2003.
    [33] B. Luo, R. Mehandru, B. S. Kang, J. Kim, F. Ren, B. P. Gila, A. H.
    Onstine, C. R. Abernathy, S. J. Pearton, D. Gotthold, R. Birkhahn, B.
    Peres, R. Fitch, J. K. Gillespie, T. Jenkins, J. Sewell, D. Via, and A.
    Crespo, “Small signal measurement of Sc2O3 AlGaN/GaN moshemts”,
    Solid-State Electron., Vol. 48, No. 2, pp. 355-358, 2004.
    [34] K. Balachander, S. Arulkumaran, Y. Sano, T. Egawa, and K. Baskar,
    “Fabrication of AlGaN/GaN double-insulator metal-oxide-semiconductor
    high-electron-mobility transistors using SiO2 and SiN as gate insulators”,
    Phys. Stat. Sol. (a), Vol. 202, No. 4, pp. 32-34, 2005.
    [35] C. Wang, N. Maeda, M. Hiroki, T. Tawara, T. Makimoto, T. Kobayashi,
    and T. Enoki, “Comparison of AlGaN/GaN insulated gate heterostructure
    field-effect transistors with ultrathin Al2O3/Si3N4 bilayer and Si3N4 single
    layer”, Jpn. J. Appl. Phys., Vol. 44, No. 4B, pp. 2735-2738, 2005.
    Chapter 4
    [1] A. V. Vertiatchikh, and L. F. Eastman, “Effect of surface and barrier
    defects on the AlGaN/GaN HEMT low-frequency noise performance”,
    IEEE Electron Device Lett., Vol. 24, No. 9, pp. 535-537, 2003.
    [2] W. K. Fong, S. W. Ng, B. H. Leung, and C. Surya, “Characterization of
    low-frequency noise in molecular beam epitaxy-grown GaN epilayers
    deposited on double buffer layers”, J. Appl. Phys., Vol. 94, No. 1, pp.
    387-391, 2003.
    [3] S. L. Rumyantsev, Y. Deng, S. Shur, M. E. Levinshtein, M. A. Khan, G.
    Simin, J. Yang, X. Hu, and R. Gaska, “On the low frequency noise
    mechanisms in GaN/AlGaN HFETs”, Semicond. Sci. Technol., Vol. 18,
    No. 6, pp. 589-593, 2003.
    [4] B. H. Leung, W. K. Fong, C. F. Zhu, and Charles Surya, “Low-frequency
    noise in GaN thin films deposited by rf-plasma assisted molecular-beam
    epitaxy”, J. Appl. Phys., Vol. 91, No. 6, pp. 3706-3710, 2002.
    [5] A. Balandin, “Gate-voltage dependence of low-frequency noise in
    GaN/AlGaN heterostructure field-effect transistors”, Elecron. Lett., Vol.
    36, No. 10, pp. 912-913, 2000.
    [6] S. Rumyantsev, M. E. Levinshtein, R. Gaska, M. S. Shur, M. A. Khan, J.
    W. Yang, G. Simin, A. Ping, and T. Adesida, “Low 1/f noise in
    AlGaN/GaN HFETs on SiC substrates”, Phys. Stat. Sol. (a), Vol. 176, No.
    1, pp. 201-204, 1999.
    [7] M. E. Levinshtein, S. L. Rumyantsev, D. C. Look, R. J. Molnar, M. A.
    Khan, G. Simin, V. Adivarahan, and M. S. Shur, “Low-frequency noise in
    n-GaN with high electron mobility”, J. Appl. Phys., Vol. 86, No. 9, pp.
    5075-5078, 1999.
    [8] D. V. Kuksenkov, H. Temkin, R. Gaska, and J. W. Yang, “Low-frequency
    noise in AlGaN/GaN heterostructure field effect transistors”, IEEE
    Electron Device Lett., Vol. 19, No. 7, pp. 222-224, 1998.
    [9] M. E. Levinshtein, F. Pascal, S. Contreras, W. Knap, S. L. Rumyantsev, R.
    Gaska, J. W. Yang, and M. S. Shur, “Low-frequency noise in GaN/GaAlN
    heterojunctions”, Appl. Phys. Lett., Vol. 72, No. 23, pp. 3053-3055, 1998.
    [10] S. L. Rumyantsev, N. Pala, M. S. Shur, and R. Gaska, “Low frequency
    noise in GaN metal semiconductors and metal oxide semiconductor field
    effect transistors”, J. Appl. Phys., Vol. 90, No. 1, pp. 310-315, 2001.
    [11] S. L. Rumyantsev, N. Pala, M. S. Shur, E. Borovitskaya, A. P. Dmitriev,
    M. E. Levinshtein, R. Gaska, M. A. Khan, J. Yang, X. Hu, and G. Simin,
    “Generation-recombination noise in GaN/AlGaN heterostructure field
    effect transistors”, IEEE Tran. Electron Devices, Vol. 48, No. 3, pp.
    530-534, 2001.
    [12] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M.
    A. Khan, G. Simin, X. Hu, and J. Yang, “Effect of gate leakage current
    on noise properties of AlGaN/GaN field effect transistors”, J. Appl.
    Phys., Vol. 88, No. 11, pp. 6726-6730, 2000.
    [13] N. Pala, R. Gaska, S. L. Rumyantsev, M. S. Shur, M. A. Khan, X. Hu, G.
    Simin, and J. Yang, “Low frequency noise in AlGaN/GaN MOS-HFETs”,
    Elecron. Lett., Vol. 36, No. 3, pp. 268-270, 2000.
    [14] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, and
    P. A. Ivanov, “Concentration dependence of the 1/f noise in AlGaN/GaN
    heterostructure field effect transistors”, Semicond. Sci. Technol., Vol. 17,
    No. 5, pp. 476-479, 2002.
    [15] S. L. Rumyantsev, N. Pala, M. S. Shur, M. E. Levinshtein, P. A. Ivanov,
    and M. A. Khan, “Low-frequency noise in AlGaN/GaN heterostructure
    field effect transistors and metal oxide semiconductor heterostructure
    field effect transistors”, Fluctuation Noise Lett., Vol. 1, No. 4, pp.
    L221-L226, 2001.
    [16] S. L. Rumyantsev, N. Pala, M. S. Shur, M. E. Levinshtein, M. A. Khan, G.
    Simin, and J. Yang, “Low-frequency noise in GaN/AlGaN
    heterostructure field effect transistors in non-ohmic region”, J. Appl.
    Phys., Vol. 93, No. 12, pp. 10030-10034, 2003.
    [17] J. M. Peransin, P. Vignaud, D. Rigaud, and L. K. J. Vandamme, “1/f noise
    in MODFET’s at low drain bias”, IEEE Tran. Electron Devices, Vol. 37,
    No. 10, pp. 2250-2253, 1990.
    [18] H. H. Chen, S. L. Chen, and J. Gong, “The oxide-trap-distributed
    Dependence of Exponent γ on 1/f Noise in MOSFETs Device”, Symp.
    Semiconductor Modeling & Simulation, pp. 39-43, 1993.
    [19] Z. Celik-Butler, and T. Y. Hsiang, “Spectral dependence of 1/fγ noise on
    gate bias in N-MOSFETs”, Solid-State Electron., Vol. 30, pp. 419, 1987.
    [20] Z. Celik-Butler, and T. Y. Hsiang, “Study of 1/f Noise in N-MOSFET’s”,
    IEEE Tran. Electron Devices, Vol. 32. No. 12, pp. 2797-2801, 1985.
    [21] G. Reimbold, “Modified 1/f trapping noise theory and experiments in
    MOS transistors bias from weak to strong inversion-influence of
    interface states”, IEEE Tran. Electron Devices, Vol. 31, No. 9, pp.
    1190-1198, 1984.
    [22] Y. K. Su, S. C. Wei, R. L. Wang, S. J. Chang, C. H. Ko, and T. M. Kuan,
    “Flicker noise of GaN-based heterostructure field-effect transistors with
    Si-doped AlGaN carrier injection layer”, IEEE Electron Device Lett., Vol.
    24, No. 10, pp. 622-624, 2003.
    [23] N. Pala, S. Rumyantsev, M. Shur, R. Gaska, X. Hu, J. Yang, G. Simin,
    and M. A. Khan, “Low frequency noise in AlGaN/InGaN/GaN double
    heterostructure field effect transistors”, Solid-State Electron., Vol. 47,
    No. 6, pp. 1099-1104, 2003.
    Chapter 5
    [1] Y. Nakano, T. Kachi, and T. Jimbo, “Characteristics of SiO2/n-GaN
    interfaces with beta-Ga2O3 interlayers”, Appl. Phys. Lett., Vol. 83, No. 21,
    pp. 4336-4338, 2003.
    [2] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor
    devices using Ga2O3 dielectrics on n-type GaN”, Appl. Phys. Lett., Vol. 82,
    No. 24, pp. 4304-4306, 2003.
    [3] B. P. Gila, J. Kim, B. Luo, A. Onstine, W. Johnson, F. Ren, C. R.
    Abernathy, and S. J. Pearton, “Advantage and limitations of MgO as a
    dielectric for GaN”, Solid-State Electron., Vol. 47, No. 12, pp. 2139-2142,
    2003.
    [4] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H.
    Shin, C. H. Lee, and K. S. Chung, “GaN metal-oxide-semiconductor
    structures using Ga-oxide dielectrics formed by photoelectrochemical
    oxidation”, Appl. Phys. Lett., Vol. 80, No.3, pp. 446-448, 2002.
    [5] K. Matocha, R. J. Gutmann, and T. P. Chow, “Effect of annealing on
    GaN-insulator interface characterized by metal-insulator-semiconductor
    capacitors”, IEEE Trans. Electron Devices, Vol. 50, No. 5, pp. 1200-1204,
    2003.
    [6] J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R.
    Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo,
    “Gd2O3/GaN metal-oxide-semiconductor field-effect-transistor”, Appl.
    Phys. Lett., Vol. 77, No. 20, pp. 3230-3232, 2000.
    [7] M. Hong, K. A. Anselm, J. Kwo, H. M. Ng, J. N. Baillageon, A. R. Kortan,
    J. P. Mannaerts, A. Y. Cho, C. M. Lee, J. I. Chyi, and T. S. Lay,
    “Properties of Ga2O3(Gd2O3)/GaN metal-insulator-semiconductor diodes”,
    J. Vac. Sci. Technol. B, Vol. 18, No. 3, pp. 1453-1456, 2000.
    [8] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno,
    “Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator-semiconductor
    interfaces with low interface state density”, Appl. Phys. Lett., Vol. 73, No.
    6, pp. 809-811, 1998.
    [9] C. T. Lee, H. Y. Lee, and H. W. Chen, “GaN MOS device using
    SiO2/Ga2O3 insulator grown by photoelectrochemical oxidation method”,
    IEEE Electron Device Lett., Vol. 24, No. 2, pp. 54-56, 2003.
    [10] B. Gaffey, L. J. Guido, X. W. Wang, and T. P. Ma, “High-quality
    oxide/nitride/oxide gate insulator for GaN MIS structures”, IEEE Trans.
    Electron Devices, Vol. 48, No. 3, pp. 458-464, 2003.
    [11] K. M. Chang, C. C. Cheng, and C. C. Lang, “Electrical properties of
    SiN/GaN MIS diodes formed by ECR-CVD”, Solid-State Electron., Vol.
    46, No. 9, pp.1399-1403, 2002.
    [12] S. J. Chang, Y. K. Su, Y. Z. Chiou, J. R. Chiou, B. R. Huang, C. S. Chang,
    and J. F. Chen, “Deposition of SiO2 layers on GaN by photo chemical
    vapor deposition”, J. Electrochem. Soc., Vol. 150, No. 2, pp. C77-C80,
    2003.
    [13] Y. K. Su, Y. Z. Chiou, S. J. Chang, J. Gong, C. S. Chang, and S. H. Liu,
    “The characteristics of Photo-CVD SiO2 and its application in GaN MIS
    photodetector”, J. Electron. Mater., Vol. 32, No. 5, pp. 395-399, 2003.
    [14] C. K. Wang, Y. Z. Chiou, S. J. Chang, Y. K. Su, B. R. Huang, T. K. Lin,
    and S. C. Chen, “AlGaN/GaN MOSHFET with Photo-CVD SiO2 gate
    oxide”, J. Electron. Mater., Vol. 32, No. 5, pp. 407-410, 2003.
    [15] Y. Z. Chiou, S. J. Chang, Y. K. Su, C. K. Wang, T. K. Lin, and B. R.
    Huang, “Photo-CVD SiO2 layers on AlGaN and AlGaN/GaN
    MOSHFET”, IEEE Trans. Electron Devices, Vol. 50, No. 8, pp.
    1748-1752, 2003.
    [16] C. K. Wang, T. K. Lin, Y. Z. Chiou, S. J. Chang, Y. K. Su, C. H. Kuo, and
    T. K. Ko, “High transconductane AlGaN/GaN MOSHFETs with
    photo-CVD gate oxide”, Semicond. Sci. Technol., Vol. 18, No. 12, pp.
    1033-1036, 2003.
    [17] C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, T. K. Lin, and B. R.
    Huang, “Low interface state density AlGaN/GaN MOSHFETs with
    photochemical vapor deposition SiO2 layers”, Phys. Stat. Sol. (c), Vol. 0,
    No. 7, pp. 2355-2359, 2003.
    [18] C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. H. Kuo, C. S. Chang,
    T. K. Lin, T. K. Ko, and J. J. Tang, “High temperature performance and
    low frequency noise characteristics of AlGaN/GaN/AlGaN double
    heterostructure metal-oxide-semiconductor heterostructure
    field-effect-transistors with photo-chemical vapor deposition SiO2 layer”,
    Jpn. J. Appl. Phys., Vol. 44, No. 4B, pp. 2458-2461, 2005.
    [19] C. K. Wang, R. W. Chuang, S. J. Chang, Y. K. Su, S. C. Wei, T. K. Lin, T.
    K. Ko, Y. Z. Chiou, and J. J. Tang, “High temperature and high frequency
    characteristics of AlGaN/GaN MOS-HFETs with photochemical vapor
    deposition SiO2 Layer”, Mater. Sci. Eng. B, Vol. 119, No. 1, pp. 25-28,
    2005.
    [20] A. B. Joshi, and D. L. Kwong, “Comparison of neutral electron trap
    generation by hot-carrier stress in N-MOSFET’s with oxide and
    oxynitride gate dielectrics”, IEEE Electron Device Lett., Vol. 13, No.
    7, pp. 360-362, 1992.
    [21] J. Ahn, A. Joshi, G. O. Lo, and D. L. Kwong, “Time-dependent dielectric
    breakdown characteristics of N2O oxide under dynamic stressing”, IEEE
    Electron Device Lett., Vol. 13, No. 10, pp. 513-515, 1992.
    [22] G. Q. Lo, A. B. Joshi, and D. L. Kwong, “Radiation hardness of
    MOSFET’s with N2O-nitrided gate oxide”, IEEE Trans. Electron
    Devices, Vol. 40, No. 8, pp. 1565-1567, 1993.
    [23] E. Ibok, K. Ahmed, M. Y. Hao, B. Ogle, J. J. Wortman, and J. R. Hauser,
    “Gate quality ultrathin (2.5nm) PECVD deposited oxynitride and
    nitrided oxide dielectrics”, IEEE Electron Device Lett., Vol. 20, No. 9, pp.
    442-444, 1999.
    [24] Y. Wu, Y. M. Lee, and G. Lucovsky, “1.6nm oxide equivalent gate
    dielectrics using nitride/oxide (N/O) composites prepared by
    RPECVD/oxidation process”, IEEE Electron Device Lett., Vol. 21, No.
    3, pp. 116-118, 1999.
    [25] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley,
    1981.
    [26] J. Frenkel, “On the theory of electric breakdown of dielectrics and
    electronic semiconductors”, Tech. Phys. USSR, Vol. 5, pp. 685, 1938.
    [27] J. Frenkel, “On pre-breakdown phenomena in insulators and electronic
    semiconductors”, Phys. Rev., Vol. 54, pp. 647, 1938.
    [28] E. H. Nicollian, and J. R. Brews, MOS (Metal Oxide Semiconductor)
    Physics and Technology, p. 96, Wiley, New York, 1982.
    Chapter 6
    [1] M. C. Hargis, R. E. Carnahan, J. S. Brown, and N. M. Jokerst, “Epitaxial
    lift-off GaAs/AlGaAs metal-semiconductor-metal photodetectors with
    back passivation”, IEEE Photonics Technol. Lett., Vol. 5, No. 10, pp.
    1210-1212, 1993.
    [2] S. Kollakowski, U. Schade, E. H. Böttcher, and D. Bimberg, “Fully
    passivated AR coated InP/InGaAs MSM photodetectors”, IEEE Photonics
    Technol. Lett., Vol. 6, No. 11, pp. 1324-1326, 1994.
    [3] M. R. Ravi, A. DasGupta, and N. DasGupta, “Effect of sulfur passivation
    and polyimide capping on InGaAs-InP PIN photodetectors”, IEEE Trans.
    Electron Devices, Vol. 50, No. 2, pp. 532-534, 2003.
    [4] B. Yang, K. Heng, T. Li, C. J. Collins, S. Wang, R. D. Dupuis, J. C.
    Campbell, M. J. Schurman, and I. T. Ferguson, “32×32 ultraviolet
    Al0.1Ga0.9N/GaN p-i-n photodetector array”, IEEE J. Quantum Electron.,
    Vol. 36, No. 11, pp. 1229-1231, 2000.
    [5] J. D. Brown, J. Boney, J. Matthews, P. Srinivasan, J. F. Schetzina, T.
    Nohava, W. Yang, and S. Krishnankutty, “UV-specific (320-365nm)
    digital camera based on a 128×128 focal plane array of GaN/AlGaN p-i-n
    photodiodes”, MRS Internet J. Nitride Semicond. Res., Vol. 5, No. 6, 2000.
    [6] A. Huber, D. Huber, T. Morf, H. Jackel, C. Bergamaschi, V. Hurm, M.
    Ludwig, and M. Schlechtweg, “Monolithic, high transimpedance gain (3.3
    kΩ), 40 Gbit/s InP-HBT photoreceiver with differential outputs,” Electron.
    Lett., Vol. 35, No. 11, pp. 897-898, 1999.
    [7] Z. Lao, V. Hurm, W. Bronner, A. Hulsmann, T. Jakobus, K. Kohler, M.
    Ludwig, and B. Raynor, “20-Gb/s 14-kΩ transimpedance
    long-wavelength MSM-HEMT photoreceiver OEIC,” IEEE Photonics
    Technol. Lett., Vol. 10, No. 5, pp. 710-712, 1998.
    [8] P. Fay, W. A. Wohlmuth, C. Caneau, S. Chandrasekhar, and I. Adesida,
    “High-speed digital and analog performance of low-noise integrated
    MSM-HEMT photoreceivers,” IEEE Photonics Technol. Lett., Vol. 9, No.
    7, pp. 991-993, 1997.
    [9] P. Fay, M. Arafa, W. A. Wohlmuth, C. Caneau, S. Chandrasekhar, and I.
    Adesida, “Design, fabrication, and performance of high-speed
    monolithically integrated InGaAs/InAlAs/InP MSM/HEMT
    photoreceivers,” J. Lightwave Technol., Vol. 15, No. 10, pp. 1871-1879,
    1997.
    [10] Y. Kyounghoon, A. L. Gutierrez-Aitken, Z. Xiangkun, G. I. Haddad, and
    P. Bhattacharya, “Design, modeling, and characterization of
    monolithically integrated InP-Based (1.55 µm) high-speed (24 Gb/s)
    p-i-n/HBT front-end photoreceivers,” J. Lightwave Technol., Vol. 14, No.
    8, pp. 1831-1839, 1996.

    無法下載圖示 校內:2026-01-09公開
    校外:2026-01-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE