簡易檢索 / 詳目顯示

研究生: 王一峰
Wang, I-Phone
論文名稱: α-Al2O3微粉燒結行為的觀察
Observation on Sintering Behavior of α-Al2O3 Fine Powder
指導教授: 黃啟原
Huang, Chi-Yuang
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 61
中文關鍵詞: 孔洞燒結氧化鋁
外文關鍵詞: pore, sintering, Alumina
相關次數: 點閱:152下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   氧化鋁的應用相當廣泛,而毫微米材料又具有許多優良性質,因此毫微米級氧化鋁的製成以及其性質受到格外的重視。氧化鋁在製程中常常需要經過一連串的相轉換,以達其穩定相 -Al2O3 。
      本實驗之起始原料是由 boehmite 煆燒獲得 64 nm 之 -Al2O3 粉末,之後施以冷均壓 (200 MPa) 以獲得所需之生坯。為了瞭解在燒結的過程中燒結體微結構的變化,吾人便以不同長度的燒結時間,漸進的燒結溫度 (1100 ~ 1600℃) 來進行燒結。並輔佐以 SEM (scanning electron microscopy) 和水銀孔隙儀來觀察孔洞分佈的變化。在前人研究中我們發現粉末在燒結的過程中會有重排的現象,此現象使得小孔洞被排除而形成更大的孔洞。本研究主要著眼於孔洞在燒結的過程中大小、分佈的變化以及在不同的平均孔洞大小和分佈下之燒結行為。
      研究發現坯體的燒結收縮呈現二段式,第一階段為 1000℃ 至 1300℃ ,此階段密度並無明顯改變,粒子進行重排,小孔隙逐漸消失,孔隙變大。第二階段則出現明顯的燒結現象。

      Al2O3 is used in a variety of applications, and it offers many superior properties. Because of this, the process and the properties of ultrafine Al2O3 is very important to us. The process of Al2O3 usually undergoes a series of phase transformation reach to stable -Al2O3.

      The starting material was 64 nm -Al2O3 obtained from the boehmite and they were then cold isostatically pressed at 200 MPa. To study the evolution of microstructure during sintering of the above compact, sintering was carried out at temperatures from 1100℃ to 1600℃ for different length of time. Microstructural observation were performed using a scanning electron microscope (SEM) and mercury penetration porosimetry to determine pore size distribution. Several studies have shown that particles rearranged with gradual diminishing of the smaller pores and the occurrence of larger pores. The research work focused on the change in pore size distribution during sintering. The sintering behavior of compacts with different in the mean pore size and pore size distribution was also considered in each sintering stage.

      In the research, the shrinkage of a compact showed two stages. The first occurred between 1100℃ and 1300℃ and the density did not change much, and the particles rearranged with gradual diminishing of the smaller pores and the occurrence of larger pores. When the second stage start, obvious sintering came up.

    中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅳ 目錄 Ⅴ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1  1-1 前言 1  1-2 研究目的 1 第二章 相關文獻回顧與整理 3  2-1 背景陳述 3  2-2 氧化鋁的過渡相 3   2-2-1 Boehmite 5   2-2-2 Al2O3 5  2-3 Al2O3 的燒結 7   2-3-1 凝聚體對燒結的影響 7   2-3-2 孔洞對燒結的影響 13   2-3-3 傳統粉末的燒結機制 17   2-3-4 微粉的燒結機制 19   2-3-5 氧化鋁陶瓷的燒結行為 23 第三章 實驗方法與步驟 25  3-1 粉末之製備 25  3-2 粉末之特性分析 25   3-2-1 晶粒粒徑量測 25   3-2-2 相變定量分析 30   3-2-3 粉末比表面積測定 30  3-3 顯微結構分析 32  3-4 燒結性質分析 32   3-4-1 密度量測 33   3-4-2 顯微結構分析 34   3-4-3 孔隙大小分佈量測 35 第四章 結果與討論 37  4-1 密度與燒結收縮曲線之分析結果 37  4-2 微結構觀察 41   4-2-1 粉末外形觀察 41   4-2-2 持溫過程中之微結構變化 44   4-2-3 升溫過程中之微結構變化 47  4-3 綜合討論 48 第五章 結論 56 第六章 未來方研究方向及建議 57 參考文獻

    1.K. Wefers and G. M. Bell, “Oxides and Hydroxides of Aluminum,” Alcoa Research Lab., Technical Paper No. 19 (1972).

    2.F. J. Ewing, “The Crystal Structure of Lepidocrocite,’’ J. Chem. Phys, 3, 420-454 (1935).

    3.J. G. M. Decleer, “TG/XRD/SEM Study of the Conversion of Gibbsite to (Pseudo) Boehmite,’’ Bull. Soc. Chim Belg. 98, 449-461 (1989).

    4.A. Putnis, Introduction to Mineral Sciences, P. 134, Cambridge, New York (1992).

    5.J. W. Halloran, “Agglormerates and Agglomeration in Ceramic Processing,’’ in Ultrastructure Processing of Ceramics, Glass and Composites, Eds. L. L. Hench and D. R. Ulrich, Wiley, New York (1984).

    6.H. Rumpf and H. Schubert, “Adhesion Forces in Agglomeration Processes,’’ in Ceramic Processing before Firing, Eds. G. Y. Onoda, Jr. and L. L. Hench, Wiley, New York (1978).

    7.D. E. Niesz and R. B. Bennett, “Structure and Properties of Agglomerates,’’ in Ceramic Processing before Firing, Eds. G. Y. Onoda, Jr., and L. L. Hench, Wiley, New York (1978).

    8.Ji Guang Li and Xudong Sun, “Synthesis and Sintering Behavior of a Nanocrystalline -Alumina Powder,’’ Acta Mater, 48 3103-3112 (2000).

    9.R. T. Tremper and R. S. Gordon, “Agglomeration Effects on the Sintering of Alumina Powders Prepared by Autoclaving Aluminum Metal,’’ in Ceramic Processing before Firing, Eds. G. T. Onoda, Jr. and L. L. Hench, Wiely, New York (1978) .

    10.D. W. Johnson, Jr., D. J. Nitti and L. Berrin, “High Purity Reactive Alumina Powders: II Particle Size and Agglomeration Study,’’ Bull. Am. Ceram. Soc., 51 [12], 896-900 (1972).

    11.J. W. Halloran, “Role of Powder Agglomerates in Ceramic Processing,”in Advances in Ceramics, Vol. 9, Forming of Ceramics, Eds. J. A. Mange and G. L. Messing, Am. Ceram. Soc (1984).

    12.R. Pampuch and Haberko, “Agglomerate in Ceramic Micropowders and their Behaviour on Cold Pressing and Sintering,’’ in Material Science Monograp , Vol. 16, Ceramic Powder, Edited by P. Vincernzini (1983).

    13.F. D. Dynys and J. W. Halloran, “Influence of Aggregates on Sintering,’’ J. Am. Ceram. Soc., 67 [9], 596-601 (1984).

    14.M. A. C. G. van de Graff and A. J. Burggraaf, “Wet-Chemical Behavior,” in Design of Advance in Ceramics, Vol.12, pp.744-765, Science and Technology of Zirconia II, Eds. N. Claussen, M. Ruhle, and A. H. Heuer, J. Am. Ceram. Soc., Columbus, OH (1983).

    15.F. F. Lange, A. I. Askay and B. I. Davis, “Processing Related Fracture Orgins: Part 3. Diffraction Sintering of ZrO2 Agglomerates in Al2O3 / ZrO2 Composite,’’ J. Am. Ceram. Soc., 66 [6], 407-408 (1983).

    16.W. D. Kingery and B. Francois, “Sintering of Crystalline Oxides, I. Interactions between Grain Boundaries and Pores,” pp. 471 in Sintering and Related Phenomena. Eds. G. C. Kuczynske, N. A. Hooton, and G. F. Gibbon, Gordon Breach, New York (1967).

    17.R. L. Coble, “Diffusion Sintering in the Solid State,” pp. 147-163 in Kinetics of High-Temperature Process, Ed. W. D. Kingery, MIT Press, Cambridge, MA, and John Wiley and Sons, New York (1959).

    18.F. F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67 [2] 83-88 (1984).

    19.T. G. M. van de Ven and R. J. Hunter, “Energy Dissipation in Sheared Coagulated Sols,” Rheologic Acta, 16 [5], 534 (1977).

    20.J. Zheng and J. S. Reed, “Effect of Particle Packing Characteristics on Solid-State Sintering,” J. Am. Ceram. Soc., 72(5)810-817 (1989).

    21.M. F. Ashby, “A First Report on Sintering Diagrams,” Acta Met., 22, 275-289 (1974) .

    22.R. L. Cobal, “Sintering Crystalline Solids: I. Intermidiate and Final State Diffusion Models,” J. Appl. Phys., 32, 787-792, (1961).

    23.K. G. Ewsuk and G. L. Messing, “Microstructural Changes during Hot Isostatic Pressing of Sintered Lead Zirconia Titanate,” 609 in Emergence Process Methods for High-Tchnology Ceramics, Ed. R. F. Devis, Plenum Press, New York (1984).

    24.P. L. Chen and I. W. Chen, “Sintering of Fine Oxide Powders : II, Sintering Mechanisms,” J. Am. Ceram. Soc., 80 [3] 637-45 (1997).

    25.M. J. Mayo, “Processing of Nanocrystalline Ceramics from Ultra Fine Particles,” International Materials Reviews 41 [3] 85-115 (1996).

    26.C. Legros, C. Carry, P. Bowen, and H. Hofmann, “Sintering of a Transition Alumina: Effect of Phase Transformation, Powder Characteristics and Thermal Cycle,” J. Europ. Ceram. Soc., 19, 1967-1978 (1999).

    27.H. P. Cohoon and C. J. Christensen, “Sintering and Grain Growth of Alpha-Alumina,” J. Am. Ceram. Soc., 39 [10], 337-344 (1956).

    28.R. L. Coble, “Sintering Crystalline Solids: II, Experimental Test of Diffusion Models in Powder Compacts,” J. Appl. Phys., 32, 793-799 (1961).

    29.R. J. Brook, “Controlled Grain Growth,” pp. 331-364 in Ceramic Fabrication Processes, Treatise on Material Science and Tech., Ed. F. F. Y. Wang, Academic Press, New York, (1976).

    下載圖示
    2003-02-14公開
    QR CODE