| 研究生: |
方耀輝 Fang, Yao-Hwei |
|---|---|
| 論文名稱: |
以密度叢集法提升支撐向量機之分類效率 Applying Density-based Clustering Algorithm to Support Vector Machines Increases Classification Efficiency |
| 指導教授: |
利德江
Li, Der-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 基於密度的叢集演算法 、支撐向量機 、時間複雜度 |
| 外文關鍵詞: | Time Complexity, Support Vector Machines, Density-based Clustering Algorithm |
| 相關次數: | 點閱:131 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
支撐向量機(Support Vector Machines; SVM)在分類問題上已被廣泛應用,然而面對大量且複雜的資料特徵,SVM最大的問題,就是正確率下降和計算時間緩慢。因此,如何在資料量與複雜度(即資料散亂程度)增加的情況下,改善SVM分類效率是本研究的方向。本研究針對大量且複雜的資料特徵,提出一個改良SVM的方法。先將大量原始資料利用密度叢集演算法(Density-based Clustering Algorithm)技巧,消除雜亂資料(Noise)並且找出取代原始資料的關鍵性資料,再以SVM進行資料分類。此外,本論文也會探討密度叢集法中參數設定及演算法的時間複雜度。最後透過驗證可知,本研究之兩階段分類法可以改善SVM對於大量且複雜資料的分類效率,因此正確率在可容忍的範圍內,節省時間成本。
none
[1]王麒瑋,支向機核心函數適用指標之建立,國立成功大學工業管理科學研究所碩士論文,民國92年
[2]王景南,多類支向機之研究,私立元智大學資訊管理研究所碩士論文,民國92年
[3]韓歆儀,應用兩階段分類法提升SVM法之分類準確率,國立成功大學工業與資訊管理學研究所碩士論文,民國93年
[4]B Ribeiro. (2002). On Data Based Learning Using Support Vector Clustering. Proceeding of the 9th International Conference on Neural Information Processing (ICONIP’02), Vol. 5, 2516-2521.
[5]Don Hush and Clint Scovel. (2003). Polynomial-Time Decomposition Algorithms for Support Vector Machine. Machine Learning, vol. 51, 51-71.
[6]Ian H. Witten and Eibe Frank. (2000). Data Mining Practical Machine Learning Tools an Techniques with Java Implementations. Morgan Kaufmann.
[7]Jiawei Han and Micheline Kamber. (2001). Data Mining Concept and Techniques. Morgan Kaufmann.
[8]LIBSVM: A Library for Support Vector Machines. C.-C. Chang, C.-J. Lin. (2001). http://www.csie.ntu.edu.tw/~cjlin/libsvm [Online].
[9]Mark Allen Weiss. (1992). Data Structures and Algorithm Analysis. Benjamin Cummings.
[10]Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96).
[11]M. Daszykowski, B. Walczak and D.L. Massart. (2002). Representative Subset Selection. Analytica Chimica Acta, vol. 468, 91-103.
[12]Nello Cristianini, John Shawe-Taylor. (2000). An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press.
[13]Q-A Tran, Q-L Zhang and X Li. (2003). Reduce The Number of Support Vectors by Using Clustering Techniques. Proceedings of the Second International Conference on Machine Learning and Cybernetics.
[14]Š. Raudys (2000).How Good Are Support Vector Machine. Neural Networks, vol. 13, 17-19.
[15]Vladimir N. Vapnik. (1999). The Nature of Statistical Learning Theory. Springer-Verlag. 2nd.
[16]Wan Zhang and Irwin King. (2002). Locating Support Vectors via -skeleton Technique. Proceedings of the 9th International Conference on Neural Information Processing (ICONIP’02), vol. 3, 1423-1427.
[17]Xiaowei Xu, Jochen Jager and Hans-Peter Kriegel. (1999). A Fast Parallel Clustering Algorithm for Large Spatial Databases. Data Mining and Knowledge Discovery, vol. 3, 263-290.
[18]Yu-Yen Ou, Chien-Yu Chen, Shien-Ching Hwang and Yen-Jen Oyang. (2003). Expediting Model Selection for Support Vector Machines Based on Data Reduction. Systems, Man and Cybernetics. IEEE International Conference on, Vol. 1, 786-791.