簡易檢索 / 詳目顯示

研究生: 呂瓔融
Lu, Ying-Jung
論文名稱: 鈦鉭合金與其氮化物薄膜之微結構與電化學性質研究
A study on the microstructure and electrochemical characteristic of TiTa alloys and the nitride thin films
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 鈦鉭合金薄膜鈦鉭氮薄膜電阻溫度係數抗腐蝕薄膜
外文關鍵詞: TiN, TaN, TiTaN, TCR, Corrosion resistance
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用反應式磁控濺鍍系統製備不同的氮化鈦、氮化鉭奈米薄膜以及兼具兩者特性的鈦鉭氮三元複合薄膜,並藉由改變氮氣流量與靶材種類等製程參數,來討論不同薄膜微結構、相組成、表面形貌對電阻率、電阻溫度係數及電化學性質之影響與關聯性。透過控制靶材材料,並通入不同的氮氣流量比進行薄膜沈積。完成後將這些薄膜以低掠角X光繞射儀分析其微結構與結晶相、掃描式電子顯微鏡觀察表面形貌、結合四點探針、表面粗度儀以及加熱平台量測薄膜電阻率與電阻溫度係數,最後利用恆電位儀與電化學交流阻抗分析儀分析薄膜的電化學性質。
    實驗結果顯示,薄膜的沉積速率會隨著製程參數的變化而改變,氮氣比例的增加會使薄膜厚度降低。薄膜微結構與表面形貌也會隨著氮氣比例而有所變化,此外TiN與TaN分別在氮氣流量比為20%與5%時,表現出薄膜繞射波峰強度降低的情況,代表此時的薄膜微結構呈現似非晶的狀態,且在此參數下的薄膜表面形貌也變得非常緻密,非晶的微結構也造成薄膜電阻上升。而結合TiN與TaN的TiTaN三元薄膜,則表現出十分穩定的薄膜微結構,使得薄膜性質與製程參數之間有較線性的變化。電化學交流阻抗結果顯示,TiTa金屬薄膜具有最大的阻抗值,而氮化薄膜則以TaN5此組參數擁有最大的阻抗值,其原因與其薄膜表面形貌和微結構相關。整體而言,氮氣比例的增加會使薄膜電阻上升,電阻溫度係數下降。而較非晶的薄膜微結構與緻密的表面有助於薄膜抗腐蝕能力的提升。薄膜性質主要受薄膜微結構與表面形貌的影響,而氮氣流量可做為控制薄膜性質的關鍵參數,並且可根據不同的用途調整適當的參數,在低電阻、高電阻溫度係數、高抗腐蝕能力等薄膜性質之間選擇,甚至可製備出兼具多種功能的薄膜。

    Binary transition metal nitride films such as titanium nitride (TiN) and tantalum nitride (TaN) have been attracted by it excellent properties. The combination of TiN and TaN is expected to create a multi-functional material. The ternary titanium tantalum nitride films with different N2/(Ar+N2) gas flow ratios (0, 5, 10, 20%) are deposited by dc reactive magnetron co-sputtering on Si (100) substrates. The effect of increasing N2 flow ratios on the microstructure, morphology, electrical properties, and electrochemical properties of the Ti-Ta-N films are investigated by means of X-ray diffraction, scanning electron microscopy (SEM), four-probe method, potentiostatic, and electrochemical impedance spectroscopy, respectively. The microstructure of TiTaN films is more stable than TiN or TaN films. The results show that the TiTa alloy film exhibits low resistivity and positive temperature coefficient of resistance (TCR) while the TiTaN films show higher resistivity and negative TCR. The change of resistivity of TiTaN films with increasing nitrogen flow ratio is more linear than TiN or TaN. The TiTa alloy film exhibited the best corrosion resistance. The SEM image of TiTaN films showed columnar microstructure while TiTa film showed large granular and flat morphology. Our studies suggested that the single phase structure is benefit to electrical properties while the amorphous-like structure and denser morphology are benefit to corrosion resistance.

    摘要 I 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 4 第二章 文獻回顧與理論基礎 6 2-1 濺鍍原理與薄膜結構模型 6 2-1-1 反應式濺鍍薄膜原理 6 2-1-2 物理氣相沉積薄膜結構模型 7 2-2 鈦金屬與氮化鈦材料性質回顧 9 2-3 鉭金屬與氮化鉭材料性質回顧 10 2-4 鈦鉭合金與鈦鉭氮薄膜材料性質回顧 12 2-5 材料腐蝕基礎理論與電化學分析方法 13 2-5-1 材料腐蝕基礎理論 13 2-5-2 極化曲線 13 2-5-3 電化學阻抗分析原理 16 第三章 實驗步驟與方法 20 3-1 實驗流程 20 3-2 實驗參數與材料 23 3-3 實驗與檢測儀器 26 3-3-1 反應式磁控濺鍍系統 26 3-3-2 微細表面測定儀 28 3-3-3 四點探針 30 3-3-4 低掠角X光繞射儀 33 3-3-5 高解析場發射掃描式電子顯微鏡 35 3-3-6 恆電位儀 38 3-3-7 電化學交流阻抗分析儀 40 第四章 實驗結果與討論 41 4-1 TiN與TaN薄膜基本性質 41 4-1-1 薄膜微結構與表面形貌 43 4-1-2 薄膜片電阻值與電阻溫度係數 49 4-1-3 薄膜電化學性質 52 4-2 TiTaN薄膜基本性質 61 4-2-1 薄膜微結構與表面形貌 62 4-2-2 薄膜電阻率與電阻溫度係數 65 4-2-3 薄膜電化學性質 68 第五章 結論與未來展望 73 5-1 結論 73 5-2 未來展望 75 5-3 本文貢獻 76 參考文獻 77

    [1] K. Holmberg, H. Ronkainen, and A. Matthews, "Tribology of thin coatings", Ceramics International, vol. 26, pp. 787-795, 2000.
    [2] C. C. Chang, J. S. Jeng, and J. S. Chen, "Microstructural and electrical characteristics of reactively sputtered Ta-N thin films", Thin Solid Films vol. 413, pp. 46-51, 2002.
    [3] D. P. Zhu, X. Q. Lin, and L. Luo, "Integration of Ta-N Thin Film Resistors on Anodic Alumina MCM-D Substrate", Journal of Electronic Packaging, vol. 131, pp. 2009.
    [4] J. Nazon, B. Fraisse, J. Sarradin, S. G. Fries, J. C. Tedenac, and N. Frety, "Copper diffusion in TaN-based thin layers", Applied Surface Science, vol. 254, pp. 5670-5674, 2008.
    [5] C. L. Liu, P. K. Chu, G. Q. Lin, and M. Qi, "Anti-corrosion characteristics of nitride-coated AISI 316L stainless steel coronary stents", Surf Coat Tech, vol. 201, pp. 2802-2806, 2006.
    [6] O. Knotek, F. Loffler, and G. Kramer, "Deposition, Properties and Performance Behavior of Carbide and Carbonitride Pvd Coatings", Surf Coat Tech, vol. 61, pp. 320-325, 1993.
    [7] S. PalDey and S. C. Deevi, "Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., vol. 342, pp. 58-79, 2003.
    [8] C. K. Chung, A. Nautiyal, T. S. Chen, and Y. L. Chang, "Grain boundary scattering for temperature coefficient of resistance (TCR) behaviour of Ta-Si-N thin films", J. Phys. D-Appl. Phys., vol. 41, pp. 2008.
    [9] H. T. Hsueh, W. J. Shen, M. H. Tsai, and J. W. Yeh, "Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr) 100-xN x", Surf Coat Tech, vol. 206, pp. 4106-4112, 2012.
    [10] N. D. Cuong, D. J. Kim, B. D. Kang, C. S. Kim, K. M. Yu, and S. G. Yoon, "Characterization of tantalum nitride thin films deposited on SiO2/Si substrates using dc magnetron sputtering for thin film resistors", Journal of The Electrochemical Society, vol. 153, pp. G164-G167, 2006.
    [11] M. Geetha, D. Durgalakshmi, and R. Asokamani, "Biomedical Implants:Corrosion and its Prevention-A Review", Recent Patents on Corrosion Science, vol. 2, pp. 40-54, 2010.
    [12] C. K. Chung, H. C. Chang, S. C. Chang, M. W. Liao, and C. C. Lai, "Evolution of enhanced crystallinity and mechanical property of nanocomposite Ti-Si-N thin films using magnetron reactive co-sputtering", Journal of Alloys and Compounds, vol. 537, pp. 318-322, 2012.
    [13] L. Wang, D. O. Northwood, X. Nie, J. Housden, E. Spain, A. Leyland, and A. Matthews, "Corrosion properties and contact resistance of TiN, TiAlN and CrN coatings in simulated proton exchange membrane fuel cell environments", J. Power Sources, vol. 195, pp. 3814-3821, 2010.
    [14] X. Cui, G. Jin, J. Hao, J. Li, and T. Guo, "The influences of Si content on biocompatibility and corrosion resistance of Zr-Si-N films", Surf Coat Tech, vol. 228, pp. S524-S528, 2013.
    [15] J. A. Thornton, "Influence of Apparatus Geometry and Deposition Conditions on Structure and Topography of Thick Sputtered Coatings", Journal of Vacuum Science & Technology, vol. 11, pp. 666-670, 1974.
    [16] J. E. Sundgren, "Structure and Properties of TiN Coatings", Thin Solid Films, vol. 128, pp. 21-44, 1985.
    [17] C. Kaufmann, J. Baumann, T. Gessner, T. Raschke, M. Rennau, and N. Zichner, "Electrical Characterization of Reactively Sputtered Tin Diffusion Barrier Layers for Copper Metallization", Applied Surface Science, vol. 91, pp. 291-294, 1995.
    [18] K. D. Vargheese, G. M. Rao, T. V. Balasubramanian, and S. Kumar, "Preparation and characterization of TiN films by electron cyclotron resonance (ECR) sputtering for diffusion barrier applications", Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 83, pp. 242-248, 2001.
    [19] M. I. Jones, I. R. McColl, and D. M. Grant, "Effect of substrate preparation and deposition conditions on the preferred orientation of TiN coatings deposited by RF reactive sputtering", Surf Coat Tech, vol. 132, pp. 143-151, 2000.
    [20] W. Huiqiang, S. Weilian, X. Yanqiu, and D. TingTing, "Study on the Color of TiN Films on the Aluminium Alloys Surface", Appl. Mech. Mater., vol. 252, pp. 250-254, 2013.
    [21] H. A. Ching, D. Choudhury, M. J. Nine, and N. A. Abu Osman, "Effects of surface coating on reducing friction and wear of orthopaedic implants", Science and Technology of Advanced Materials, vol. 15, pp. 2014.
    [22] S. Veprek and M. J. G. Veprek-Heijman, "Industrial applications of superhard nanocomposite coatings", Surf Coat Tech, vol. 202, pp. 5063-5073, 2008.
    [23] H. Hasegawa, A. Kimura, and T. Suzuki, "Microhardness and structural analysis of (TI,AI)N, (Ti,Cr)N, (Ti,Zr)N and (TI,V)N films", Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 18, pp. 1038-1040, 2000.
    [24] A. Hoerling, J. Sjolen, H. Willmann, T. Larsson, M. Oden, and L. Hultman, "Thermal stability, microstructure and mechanical properties of Ti1-xZrxN thin films", Thin Solid Films, vol. 516, pp. 6421-6431, 2008.
    [25] D. B. Lee, M. H. Kim, Y. C. Lee, and S. C. Kwon, "High temperature oxidation of TiCrN coatings deposited on a steel substrate by ion plating", Surf Coat Tech, vol. 141, pp. 232-239, 2001.
    [26] A. A. Navid and A. M. Hodge, "Nanostructured alpha and beta tantalum formation-Relationship between plasma parameters and microstructure", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., vol. 536, pp. 49-56, 2012.
    [27] X. Sun, E. Kolawa, J. S. Chen, J. S. Reid, and M. A. Nicolet, "Properties of Reactively Sputter-Deposited Ta-N Thin-Films", Thin Solid Films, vol. 236, pp. 347-351, 1993.
    [28] C. S. Shin, D. Gall, Y. W. Kim, N. Hellgren, I. Petrov, and J. E. Greene, "Development of preferred orientation in polycrystalline NaCl-structure delta-TaN layers grown by reactive magnetron sputtering: Role of low-energy ion surface interactions", Journal of Applied Physics, vol. 92, pp. 5084-5093, 2002.
    [29] J. Nazon, J. Sarradin, V. Flaud, J. C. Tedenac, and N. Frety, "Effects of processing parameters on the properties of tantalum nitride thin films deposited by reactive sputtering", Journal of Alloys and Compounds, vol. 464, pp. 526-531, 2008.
    [30] S. M. Cardonne, P. Kumar, C. A. Michaluk, and H. D. Schwartz, "Tantalum and Its Alloys", International Journal of Refractory Metals & Hard Materials, vol. 13, pp. 187-&, 1995.
    [31] H. Matsuno, A. Yokoyama, F. Watari, M. Uo, and T. Kawasaki, "Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium", Biomaterials, vol. 22, pp. 1253-1262, 2001.
    [32] Y. X. Leng, H. Sun, P. Yang, J. Y. Chen, J. Wang, G. J. Wan, N. Huang, X. B. Tian, L. P. Wang, and P. K. Chu, "Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering", Thin Solid Films, vol. 398, pp. 471-475, 2001.
    [33] Y. L. Zhou, M. Niinomi, and T. Akahori, "Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications", Materials Science and Engineering: A, vol. 371, pp. 283-290, 2004.
    [34] Y. L. Zhou, M. Niinomi, T. Akahori, H. Fukui, and H. Toda, "Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications", Materials Science and Engineering: A, vol. 398, pp. 28-36, 2005.
    [35] Y.-L. Zhou and M. Niinomi, "Microstructures and mechanical properties of Ti–50mass% Ta alloy for biomedical applications", Journal of Alloys and Compounds, vol. 466, pp. 535-542, 2008.
    [36] Y. L. Zhou and M. Niinomi, "Ti-25Ta alloy with the best mechanical compatibility in Ti-Ta alloys for biomedical applications", Mater. Sci. Eng. C-Biomimetic Supramol. Syst., vol. 29, pp. 1061-1065, 2009.
    [37] G. M. Matenoglou, L. E. Koutsokeras, C. E. Lekka, G. Abadias, C. Kosmidis, G. A. Evangelakis, and P. Patsalas, "Structure, stability and bonding of ternary transition metal nitrides", Surf Coat Tech, vol. 204, pp. 911-914, 2009.
    [38] X. Liu, G. J. Ma, G. Sun, Y. P. Duan, and S. H. Liu, "The influence of Ti doping on the mechanical properties of TaN film", Surf Coat Tech, vol. 212, pp. 128-133, 2012.
    [39] G. Abadias, L. E. Koutsokeras, S. N. Dub, G. N. Tolmachova, A. Debelle, T. Sauvage, and P. Villechaise, "Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N", J. Vac. Sci. Technol. A, vol. 28, pp. 541-551, 2010.
    [40] X. Luo and J. J. Davis, "Electrical biosensors and the label free detection of protein disease biomarkers", Chem. Soc. Rev., vol. 42, pp. 5944-5962, 2013.
    [41] L. R. F. Allen J. Bard, Electrochemical Methods: Fundamentals and Applications 2nd ed.: Wiley, 2001.
    [42] T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, and J. K. Kivilahti, "Reactive sputter deposition and properties of TaxN thin films", Microelectronic Engineering, vol. 64, pp. 289-297, 2002.
    [43] W. H. Lee, J. Lin, and C. Lee, "Characterization of tantalum nitride films deposited by reactive sputtering of Ta in N2/Ar gas mixtures", Materials Chemistry and Physics, vol. 68, pp. 266-271, 2001.
    [44] J. Chakraborty, K. Kumar, R. Ranjan, S. G. Chowdhury, and S. R. Singh, "Thickness-dependent fcc-hcp phase transformation in polycrystalline titanium thin films", Acta Mater., vol. 59, pp. 2615-2623, 2011.
    [45] N. Arshi, J. Lu, C. G. Lee, J. H. Yoon, B. H. Koo, and F. Ahmed, "Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques", Bull. Mater. Sci., vol. 36, pp. 807-812, 2013.
    [46] J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, "Reactive-Sputter-Deposited TiN Films on Glass Substrates", Thin Solid Films, vol. 197, pp. 117-128, 1991.
    [47] Y. Kajikawa, S. Noda, and H. Komiyama, "Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides", J. Vac. Sci. Technol. A, vol. 21, pp. 1943-1954, 2003.
    [48] H. Chunlin, Z. Jinlin, W. Jianming, M. Guofeng, Z. Dongliang, and C. Qingkui, "Effect of structural defects on corrosion initiation of TiN nanocrystalline films", Applied Surface Science, vol. 276, pp. 667-671, 2013.
    [49] J. H. Tyan and J. T. Lue, "Grain boundary scattering in the normal state resistivity of superconducting NbN thin films", Journal of Applied Physics, vol. 75, pp. 325-31, 1994.
    [50] L. E. Koutsokeras, G. Abadias, C. E. Lekka, G. M. Matenoglou, D. F. Anagnostopoulos, G. A. Evangelakis, and P. Patsalas, "Conducting transition metal nitride thin films with tailored cell sizes: The case of δ-Ti[sub x]Ta[sub 1−x]N", Applied Physics Letters, vol. 93, pp. 011904, 2008.
    [51] R. A. Silva, M. Walls, B. Rondot, M. D. Belo, and R. Guidoin, "Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery", J Mater Sci-Mater M, vol. 13, pp. 495-500, 2002.
    [52] Y. Cheng, W. Cai, H. T. Li, Y. F. Zheng, and L. C. Zhao, "Surface characteristics and corrosion resistance properties of TiNi shape memory alloy coated with Ta", Surf Coat Tech, vol. 186, pp. 346-352, 2004.
    [53] S. Amand, M. Musiani, M. E. Orazem, N. Pebere, B. Tribollet, and V. Vivier, "Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings", Electrochimica Acta, vol. 87, pp. 693-700, 2013.
    [54] V. E. Selvi, V. K. W. Grips, and H. C. Barshilia, "Electrochemical behavior of superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive DC unbalanced magnetron sputtering", Surf Coat Tech, vol. 224, pp. 42-48, 2013.

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE