| 研究生: |
蔡適聰 Tsai, Shih-Tsung |
|---|---|
| 論文名稱: |
減低尼羅紅在微管道中的吸附 Alleviating the adsorption of Nile red in microfluidic channel |
| 指導教授: |
王翔郁
Wang, Hsiang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 尼羅紅染劑 、蝕刻PDMS 、微流道 |
| 外文關鍵詞: | Nile red adsorption, PDMS etching, microfluidic channel |
| 相關次數: | 點閱:84 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於原油產量下降,造成了能源危機,因此替代能源的研究如雨後春筍般的興起,例如:太陽能、風能、地熱能、生質能源…等等,在生質能源中,利用藻類生產生質柴油的研究相當受矚目,因藻類含有大量油脂、可固定二氧化碳、且不需大面積的土地培養。然而現行的藻油量檢測方法費時且需使用大量樣品,因此在本實驗室先前的研究中希望利用微流體系統進行低成本、低樣品量、快速且簡單的油量偵測。然而,以矽膠高分子(聚二甲基矽氧烷,PDMS)作為基質的微流體系統往往會有許多疏水性分子吸附於裝置表面上,對於使用尼羅紅染劑染色的油量檢測實驗來說,染劑分子的吸附造成過高的螢光背景,影響偵測結果的準確性,是極需解決的問題。
本研究中針對尼羅紅染劑吸附的問題提出兩種解決方案,第一種是使用磷酸緩衝液沖洗流道,將吸附於PDMS表面的染劑分子沖除。第二種方法為透過製作兩種複合型裝置,減少樣品與PDMS的接觸面積,降低染劑分子的吸附。實驗結果發現,利用緩衝液沖洗的方法效果不彰,並未能將吸附的染劑分子去除,因此轉而利用兩種複合型裝置:玻璃–PDMS–玻璃以及玻璃–光阻–玻璃,希望可降低尼羅紅染劑的吸附。在製作玻璃–PDMS–玻璃的過程中發現,PDMS薄膜的濕蝕刻實驗再現性低,且裝置製程耗時,PDMS薄膜與玻璃的黏合度差,因此並不適用。而使用光阻替代PDMS的裝置,製程短且黏合後不易脫落,但在實驗過程中,殘留於玻片上的化學物質與緩衝液反應,產生了未知的反應物堆積,無法觀察螢光背景是否能夠移除。
In recent years, much attention has been paid to the alternative energy due to the shortage of fossil oil. Examples of the alternative energy include solar, wind, geothermal and biomass. Microalgaes is a promising source of producing biodiesel because they produce abundant lipids and fixes carbon dioxide while requires little land space. However, conventional quantification methods for microalgae lipid content are time-consuming and require a large amount of samples. Our previous study attempted to use microfluidic system to quantify the microalgae oil because microfluidic systems offer advantages of high throughput and low cost analysis as well as tiny sample amount. However, polydimethylsiloxane (PDMS)-based device adsorbs hydrophobic molecules and these molecules can produce fluorescence background. In our previous experiments, the adsorption of Nile red on the microfluidic channel created fluorescence background that was comparable to the intensity of microalgae and it greatly compromised the accuracy of the fluorescence-based detection.
In this study, two methods are proposed to solve the adsorption of Nile red on the surface of PDMS. First, microchannel was flushed by phosphate buffer to remove Nile red. Second, the contact area between sample and PDMS was decreased by using sandwiched devices. There are two types of sandwiched device: Glass-PDMS-Glass or Glass-Photoresist- Glass, and they use PDMS film and photoresist, respectively, as the bonding layer of two glass slides. Unfortunately flushing buffer barely removed the fluorescence background. In the fabrication of Glass-PDMS-Glass device, the wet etching between PDMS was difficult to control and the results were not consistent. In addition, the fabrication of Glass-PDMS-Glass device was complicated and time-consuming. Therefore, photoresist was used to replace PDMS as the bonding layer. Fabrication of Glass-Photoresist-Glass device was fast and straightforward. However, when flushed by buffer, there were unknown substances generated in the channel and the fluorescence background measurement was not possible.
【1】Adlerstein D, Bigogno C, Khozin I and Cohen Z. 1997“The Effect of Growth Temperature and Culture Density on The Molecular Species Composition of The Galactolipids in The Red Microalga Porphyhdium Cruentum (Rhodophyta)”Journal of. Phycology: 33, p. 975-979.
【2】Chisti Y. 2007“Biodiesel from Microalgae”Biotechnology Advances: 25, p. 294-306.
【3】Xu H, Miao XL and Wu Q. 2006“High Quality Biodiesel Production from A Microalga Chlorella Protothecoides by Heterotrophic Growth in Fermenters”Jounal of Biotechnology: 126, p. 499-507.
【4】Huang GH, Chen F, Wei D, Zhang XW and Chen G. 2010“Biodiesel Production by Microalgal Biotechnology”Applied Energy: 87, p. 38-46.
【5】Yeh KL, Chang JS and Chen WM. 2010“Effect of Light Supply and Carbon Source on Cell Growth and Cellular Composition of A Newly Isolated Microalga Chlorella Vulgaris ESP-31”Engineering in Life Sciences: 10, p. 201-208.
【6】Widjaja A, Chien CC and Ju YH. 2009“Study of Increasing Lipid Production from Fresh Water Microalgae Chlorella Vulgaris”Journal of the Taiwan Institute of Chemical Engineers: 40, p. 13-20.
【7】Alonzo F and Mayzaud P. 1999“Spectrofluorometric Quantification of Neutral and Polar Lipids in Zooplankton Using Nile Red”Marine chemistry: 67, p. 289-301.
【8】Fischer GA and Kabara JJ. 1964“Simple, Multibore Columns for Superior Fractionation of Lipids* 1”Analytical Biochemistry: 9, p. 303-309.
【9】Metcalfe L, Schmitz AA and Pelka J. 1966“Rapid Preparation of Fatty Acid Esters from Lipids for Gas Chromatographic Analysis”Analytical Chemistry: 38, p. 514-515.
【10】Wijngaarden VD. 1967“Modified Rapid Preparation of Fatty Acid Esters from Lipids for Gas Chromatographic Analysis”Analytical Chemistry: 39, p. 848-849.
【11】Greenspan P, Mayer EP and Fowler SD. 1985“Nile Red:A Selective Fluorescent Stain for Intracellular Lipid Droplets”The Journal of Cell Biology: 100, P. 965-973.
【12】Huang GH, Chen G and Chen F. 2009“Rapid Screening Method for Lipid Production in Alga Based on Nile Red Fluorescence”Biomass and Bioenergy: 33, p. 1386-1392.
【13】Chen W, Zhang CW, Song LR, Sommerfeld M, Hu Q. 2009“A High Throughput Nile Red Method for Quantitative Measurment of Neutral Lipids in Microalgae”Journal of Microbiological Methods:77, p.41-47.
【14】Huh DG, Gu1 W, Kamotani Y, Grotberg JB and Takayama S. 2005“Microfluidics for Flow Cytometric Analysis of Cells and Particles”Physiological Measurement: 26, p. 73-98.
【15】McClain MA, Culbertson CT, Jacobson SC and Ramsey JM. 2001“Flow Cytometry of Escherichia coli on Microfluidic Devices” Analytical Chemistry: 73, p. 5334-5338.
【16】Altendorf E, Zebert D, Holl M and Yager P. 1997“Differential Blood Cell Counts Obtained Using a Microchannel Based Flow Cytometer”lnternational Conference on Solid-state Sensors and Actuators Chicago: p. 16-19.
【17】Fiorini GS and Chiu DT. 2005“Disposable Microfluidic Devices:Fabrication, Function, and Application”BioTechniques: 38.
【18】Duffy DC, McDonald JC, Schueller OJA and Whitesides GM. 1998“Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)”Analytical Chemistry: 70, p. 4974-4984.
【19】黃庭軒 and 王翔郁, 2011“發展檢測藻類細胞含油量及藻種分離之微流體技術”國立成功大學化學工程學系碩士論文:p. 1-83
【20】Toepki MW and Beebe DJ. 2006“PDMS Absorption of Small Molecules and Consequences in Microfluidic Applications”Lab on A Chip: 6, p. 1484-1486.
【21】Wong I and Ho CM. 2009“Surface Molecular Property Modifications for
Poly(dimethylsiloxane) (PDMS) Based Microfluidic Devices”Microfluid Nanofluid: 7, p.291-306.
【22】Plecis A and Chen Y. 2007“Fabrication of Microfluidic Devices Based on Glass–PDMS–Glass Technology”Microelectronic Engineering: 84, p. 1265-1269.
【23】Wu HK, Huang B and Zare RN. 2005“Construction of Microfluidic Chips Using Polydimethylsiloxane for Adhesive Bonding” Lab on A Chip: 5, p. 1393-1398.
【24】Wing W, Chow Y, Lei KF, Shi GY, Li WJ and Huang Q. 2006“Microfluidic Channel Fabrication by PDMS-Interface Bonding”Smart Materials and Structures: 15, p. S112–S116.
【25】Takayama S, Ostuni E, Qian XP, McDonald JC, Jiang XY, LeDuc P, Wu MH, Ingber DE and Whitesides GM. 2001“Topographical Micropatterning of Poly(dimethylsiloxane)Using Laminar Flows of Liquids in Capillaries”Advanced Materials: 13.
【26】Oh SR. 2008“Thick Single-Layer Positive Photoresist Mold and Poly(dimethylsiloxane) (PDMS) Dry Etching for The Fabrication of A Glass–PDMS–Glass Microfluidic Device”Journal of Micromechanics Microengineering:18.
【27】Plecis A and Chen Y. 2008“Improved Glass–PDMS–Glass Device Technology for Accurate Measurements of Electro-Osmotic Mobilities”Microelectronic Engineering:85, p. 1334-1336.
【28】Cheng IF, Lin CC, Lin DY and Chang HC. 2010”A Dielectrophoretic Chip with A Roughened Metal Surface for on–Chip Surface–Enhanced Raman Scattering Analysis of Bacteria”Biomicrofluidics:4.
【29】Wang GJ, Hsu YF, Hsu SH and Horng RH. 2006“JSR Photolithography Based Microvessel Scaffold Fabrication And Cell Seeding”Biomedical Microdevices: 8, p. 17-23.
【30】Angela Bernarda and 王翔郁, 2011“以台灣原生混合菌進行不同尺度下的微生物燃料電池研究”國立成功大學化學工程學系碩士論文:p. 1-121