簡易檢索 / 詳目顯示

研究生: 吳麗嵐
Wu, Li-Lan
論文名稱: 藉由細胞色素 P450 BM-3 突變株調控含氟化合物進行氧化時的立體及位置選擇性
Regio- and Stereo-controlled C-H Activation of Fluorinated octanes via Cytochrome P450 BM-3 variants
指導教授: 黃得時
Huang, Ded-Shih
俞聖法
Yu, Sheng-Fa
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 191
中文關鍵詞: 細胞色素氟化反應
外文關鍵詞: cytochrome P450 BM-3, Fluorinated compound
相關次數: 點閱:169下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前利用傳統的有機合成方式去進行烷烴類的C-H 氧化反應在有機合成領域是一大挑戰,一般進行此類的合成條件都必須控制在高溫及高壓狀態下,在我們的研究成果中發現,可藉由生物細菌做為反應的催化劑,例如: methanotropic bacteria,Pseudomonas spp. and Bacillus megaterium,此外,亦可以在常溫常壓下運用大腸桿菌大量表現P450 BM-3,利用大氣中的氧氣做為氧化劑,進行烷烴類的氧化反應(醇類或氧雜環烷類)。為了瞭解這些化合物中的C-H 鍵在細菌反應中的氧化行為機制,因此藉由我們所設計的實驗進一步的探討之。在我們的研究中,利用基因工程進行定點突變細胞色素P450 BM-3(Cytochrome P450 BM-3)中特定胺基酸序列A74G F87V L188Q (3mt protein) 暨A74G F87V L188Q A328F),並使用辛烷及含氟化合物做為反應中的受質,研究成果發現含氟化合物的活性遠大於相對應的烷類。從氧化後的產物分析後,發現突變後的酵素,具有專一位置選擇性及立體選擇性的催化;另一方面,當氟原子取代氫原子時,雖然,相較於其他的元素,氟的原子半徑和氫相近,但是氟在化學性質或物理性質上都與氫相差很多,如電負度及鍵能等,而普遍的觀念上,氟原子應具有很強的拉電子效應(electron withdrawing effect),有趣的是,在我們的研究中,含氟化合物和疏水性的酵素口袋間,卻具有相當的親和性; 同時,亦極可能在加上氟原子的取代後,造成分子構型的轉變,讓受質及酵素間具有較佳化的構型吻合性;基於這些因素,我們希望能將此有效率且簡易又環保的生化合成方式,結合在藥物或是綠色化學中,進行更多有前瞻性的研究及貢獻。

    To initiate the C-H bond oxidation of aliphatic compounds is a great challenge for synthetic chemists. The conventional synthetic methods and industrial processes are usually required with extremely high temperature and high pressure to carry out the corresponding events. However, some of the gram-negative bacteria, like methanotropic bacteria, Pseudomonas spp. and Bacillus megaterium can facilely convert the aliphatic fine chemicals to the corresponding alcohols or oxiranes at ambient temperature and pressure.
    To understand how the C-H bond get activated in these microorganisms have withdrew great interest. In this study, cytochrome P450 BM-3 A74G F87V L188Q (3mt protein) and its variant A328F (A74G F87V L188Q A328F) adapted with its oxidoreductase in E. coli BL21(DE3) was used to convert designed fluorinated C8 alkanes to the corresponding alcohols in whole cell catalytic manner. We aim to probe the hydrophobic pockets within the enzymes. With the products variants by comparison with the results emerged from n-octane derivatives, we would have better understanding how C-F bond behaved like C-H bond to control the orientation of the substrates for their controlled oxidation. The obtained results would lead with the great insights for developing facile bio-related catalysts. The corresponding chemicals conversion could be utilitized as facile building blocks for the applications of organic synthesis in green chemistry approach.

    中文摘要 ................................ 1 Abstract ............................... 2 誌謝 .................................... 3 Contents ............................... 5 Legends of the Figures ...................8 Legends of the Tables ....................10 Legends of the Schemes...................11 Chapter 1: Introduction ................ 12 1.1 The catalog of CYP (Cytochrome P450) .....12 1.2 Classes of the P450 Superfamily ......... 16 1.3 Oxidation Mechanism Catalyzed by Cytochrome P450 ... 17 1.4 The background of Bacillus megaterium .............. 20 1.5 The behavior of P450 BM-3 .......................... 21 1.6 The heme-binding domain (BMP) of P450 BM-3 .......... 22 1.7 The influences of fluorine in biological chemistry .. 23 1.8 Mechanism of Fluorination ........................... 24 Chapter 2: Biochemical Methods for the Characterization of Cytochrome P450 BM-3 .... 26 2.1 Methods for DNA Manipulation, Mutagenesis Studies, Recombinant Protein Expression and Purification of cytochrome P450 ......................... 26 2.2 Materials ................................ 29 2.3 Instrumentations ......................... 31 2.4 Experimental section (Preparation of Bio-related Materials) .................................... 33 2.4.1 Protein assay (Bradford Methods) ........ 33 2.4.2 Induction temperature control ........... 35 2.4.3 Effect of induction timing .............. 36 2.4.4 Protein concentration control ........... 36 2.4.5 Reaction Time control ................... 37 2.4.6 The quantification of recombinant cytochrome P-450. .. 38 2.4.7 Determination of NADPH Consumption Rate.... 38 2.4.8 Determination of Product formation Rate ... 39 Chapter 3: Synthesis of the fluorinated compounds ... 40 3.1 Background ...................................... 40 3.2 Results ....................................... 40 3.3 Discussion ..................................... 43 3.4 Experimental Section .......................... 43 3.4.1 The Synthesis of fluorinated compounds ........ 43 3.4.2 The synthesis of 1,1,1-trifluorooctane (7) (two steps) .............46 Chapter 4: The fluorinated compounds were activated by P450 BM-3 variants (3mt and 3mt-F328) ....... 48 4.1 Background ............................... 48 4.2 Results .................................... 50 4.2.1 Whole-cell Conversion of the Fluorinated Substrates 1 - 7 Mediated by Cytochrome P450 BM-3 A74G F87V L188Q(3mt)...50 4.2.2 The P450 BM-3 3mt A328F Mutant Mediated Regio-selective hydroxylation of the Fluorinated n-Octanes. ... 58 4.2.3 Dramatic High Coupling Efficiencies between Electron Transfer and Substrate Activation in the P450 BM-3 Variants for the Fluorinated Substrates ......................... 61 4.3 Discussion ......................................... 62 4.4 Experimental Section ............................ 66 4.4.1 The products from 3mt and 3mt-F328 activated by fluorinated compounds ...... 66 4.4.2 Products Analysis ............................. 73 Chapter 5: Identification the optical activity of alcoholic products mediated by Cytochrome P450 BM-3. ............ 75 5.1 Background ........................................ 75 5.2 Results ........................................... 76 5.2.1 Stereoselectivity of the Sub-terminal Activation of the Fluorinated n-Octanes Mediated by P450 BM-3 3mt and 3mt-F328 ........................ 76 5.3 Discussion ......................................... 79 5.4 Experimental section .......................... 83 5.4.1 Preparation of the (R)-O-acetylmandelic acid derivatives of (R)-, (S)-octan-2-ols,(R)-, (S)-octan-3-ols as well as fluorinated (±)-octan-2-ols (1−5a) and 3-ols (1−3b and 5b). ................................ 83 Chapter 6: Conclusion ........................... 91 References ..................................... 93

    (1) Wislocki, P. G.; Miwa, G. T.; Lu, A. Y. H. In Enzymatic Basis of Detoxification Jakoby, W. B., Ed.; Academic Press: New York, 1980; Vol. 1, p 135.
    (2) Sanga, M.; Younis, I. R.; Tirumalai, P. S.; Bland, T. M.; Banaszewska, M.; Konat, G. W.; Tracy, T. S.; Gannett, P. M.; Callery, P. S. Toxicol. Appl. Pharmacol. 2006, 211, 148.
    (3) Chu, Z. M.; Croft, K. D.; Kingsbury, D. A.; Falck, J. R.; Reddy, K. M.; Beilin, L. J. Clin. Sci. 2000, 98, 277.
    (4) Lee, H. S.; Park, E. J.; Ji, H. Y.; Kim, S. Y.; Im, G. J.; Lee, S. M.; Jang, I. J. Xenobiotica 2008, 38, 21.
    (5) Ward, B. A.; Morocho, A.; Kandil, A.; Galinsky, R. E.; Flockhart, D. A.; Desta, Z. Br. J. Clin. Pharmacol. 2004, 58, 277.
    (6) Edwards, P. R.; Hrycay, E. G.; Bandiera, S. M. Chem.-Biol. Interact. 2007, 169, 42.
    (7) Chang, T. K. H.; Yeung, R. K. Y. Can. J. Physiol. Pharmacol. 2001, 79, 220.
    (8) Kashiyama, E.; Yokoi, T.; Odomi, M.; Funae, Y.; Inoue, K.; Kamataki, T. Drug Metab. Dispos. 1997, 25, 716.
    (9) Nakamura, K.; Yokoi, T.; Kodama, T.; Inoue, K.; Nagashima, K.; Shimada, N.; Shimizu, T.; Kamataki, T. Naunyn-Schmiedebergs Arch. Pharmacol. 1998, 358, P435.
    (10) Pegolo, S.; Giantin, M.; Dacasto, M.; Montesissa, C.; Capolongo, F. Xenobiotica 2010, 40, 255.
    (11) Hesse, L. M.; Venkatakrishnan, K.; Von Moltke, L. L.; Shader, R. I.; Greenblatt, D. J. Drug Metab. Dispos. 2001, 29, 133.
    (12) Gallo, M.; Bertrand, J. C.; Azaulay, E. FEBS Lett. 1971, 19, 45.
    (13) Scheller, U.; Zimmer, T.; Kargel, E.; Schunck, W. H. Arch. Biochem. Biophys. 1996, 328, 245.
    (14) Filipovic, D.; Paulsen, M. D.; Loida, P. J.; Sligar, S. G.; Ornstein, R. L. Biochem. Biophys. Res. Commun. 1992, 189, 488.
    (15) England, P. A.; Harford-Cross, C. F.; Stevenson, J. A.; Rouch, D. A.; Wong, L. L. FEBS Lett. 1998, 424, 271.
    (16) Sibbesen, O.; Zhang, Z. P.; de Montellano, P. R. O. Arch. Biochem. Biophys. 1998, 353, 285.
    (17) Harford-Cross, C. F.; Carmichael, A. B.; Allan, F. K.; England, P. A.; Rouch, D. A.; Wong, L. L. Protein Eng. 2000, 13, 121.
    (18) Jones, J. P.; O'Hare, E. J.; Wong, L. L. Eur. J. Biochem. 2001, 268, 1460.
    (19) Chen, X. H.; Christopher, A.; Jones, J. P.; Bell, S. G.; Guo, Q.; Xu, F.; Rao, Z. H.; Wong, L. L. J. Biol. Chem. 2002, 277, 37519.
    (20) Matsuura, K.; Tosha, T.; Yoshioka, S.; Takahashi, S.; Ishimori, K.; Morishima, I. Biochem. Biophys. Res. Commun. 2004, 323, 1209.
    (21) Celik, A.; Speight, R. E.; Turner, N. J. Chem. Commun. 2005, 3652.
    (22) Sowden, R. J.; Yasmin, S.; Rees, N. H.; Bell, S. G.; Wong, L. L. Org. Biomol. Chem. 2005, 3, 57.
    (23) Gustafsson, M. C. U.; Roitel, O.; Marshall, K. R.; Noble, M. A.; Chapman, S. K.; Pessegueiro, A.; Fulco, A. J.; Cheesman, M. R.; von Wachenfeldt, C.; Munro, A. W.
    Biochemistry 2004, 43, 5474.
    (24) Asperger, O.; Naumann, A.; Kleber, H. P. FEMS Microbiol. Lett. 1981, 11, 309.
    (25) Muller, R.; Asperger, O.; Kleber, H. P. Biomedica Biochimica Acta 1989, 48, 243.
    (26) Maier, T.; Forster, H. H.; Asperger, O.; Hahn, U. Biochem. Biophys. Res. Commun. 2001, 286, 652.
    (27) Narhi, L. O.; Fulco, A. J. J. Biol. Chem. 1986, 261, 7160.
    (28) Glieder, A.; Farinas, E. T.; Arnold, F. H. Nat. Biotechnol. 2002, 20, 1135.
    (29) Meinhold, P.; Peters, M. W.; Chen, M. M. Y.; Takahashi, K.; Arnold, F. H. ChemBioChem 2005, 6, 1765.
    (30) Kubo, T.; Peters, M. W.; Meinhold, P.; Arnold, F. H. Chem.-Eur. J. 2006, 12, 1216.
    (31) Munzer, D. F.; Meinhold, P.; Peters, M. W.; Feichtenhofer, S.; Griengl, H.; Arnold, F. H.; Glieder, A.; de Raadt, A. Chem. Commun. 2005, 2597.
    (32) Landwehr, M.; Hochrein, L.; Otey, C. R.; Kasrayan, A.; Backvall, J. E.; Arnold, F. H. J. Am. Chem. Soc. 2006, 128, 6058.
    (33) Otey, C. R.; Bandara, G.; Lalonde, J.; Takahashi, K.; Arnold, F. H. Biotechnol. Bioeng. 2006, 93, 494.
    (34) Li, Q. S.; Ogawa, J.; Schmid, R. D.; Shimizu, S. Biosci. Biotechnol. Biochem. 2005, 69, 293.
    (35) Sulistyaningdyah, W. T.; Ogawa, J.; Li, Q. S.; Maeda, C.; Yano, Y.; Schmid, R. D.; Shimizu, S. Appl. Microbiol. Biotechnol. 2005, 67, 556.
    (36) Urlacher, V. B.; Makhsumkhanov, A.; Schmid, R. D. Appl. Microbiol. Biotechnol. 2006, 70, 53.
    (37) Budde, M.; Maurer, S. C.; Schmid, R. D.; Urlacher, V. B. Appl. Microbiol. Biotechnol. 2004, 66, 180.
    (38) Lentz, O.; Feenstra, A.; Habicher, T.; Hauer, B.; Schmid, R. D.; Urlacher, V. B. ChemBioChem 2006, 7, 345.
    (39) Munro, A. W.; Daff, S.; Coggins, J. R.; Lindsay, J. G.; Chapman, S. K. Eur. J. Biochem. 1996, 239, 403.
    (40) Roberts, G. A.; Grogan, G.; Greter, A.; Flitsch, S. L.; Turner, N. J. J. Bacteriol. 2002, 184, 3898.
    (41) Noble, M. A.; Miles, C. S.; Chapman, S. K.; Lysek, D. A.; Mackay, A. C.; Reid, G. A.; Hanzlik, R. P.; Munro, A. W. Biochem. J. 1999, 339, 371.
    (42) Fisher, M. B.; Zheng, Y. M.; Rettie, A. E. Biochem. Biophys. Res. Commun. 1998, 248, 352.
    (43) Stevenson, J. A.; Westlake, A. C. G.; Whittock, C.; Wong, L. L. J. Am. Chem. Soc. 1996, 118, 12846.
    (44) Bell, S. G.; Stevenson, J. A.; Boyd, H. D.; Campbell, S.; Riddle, A. D.; Orton, E. L.; Wong, L. L. Chem. Commun. 2002, 490.
    (45) Bell, S. G.; Orton, E.; Boyd, H.; Stevenson, J. A.; Riddle, A.; Campbell, S.; Wong, L. L. Dalton Trans. 2003, 2133.
    (46) Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold, F. H. J. Am. Chem. Soc. 2003, 125, 13442.
    (47) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. Chem. Rev. 2010, 110, 949.
    (48) Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry, 1994.
    (49) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879.
    (50) Warman, A. J.; Roitel, O.; Neeli, R.; Girvan, H. M.; Seward, H. E.; Murray, S. A.; McLean, K. J.; Joyce, M. G.; Toogood, H.; Holt, R. A.; Leys, D.; Scrutton, N. S.; Munro,
    A. W. Biochem. Soc. Trans. 2005, 33, 747.
    (51) Chiang, C.; Bennett, R. E. J. Bacteriol. 1967, 93, 302.
    (52) Illanes, A.; Acevedo, F.; Gentina, J. C.; Reyes, I.; Torres, R.; Cartagena, O.; Ruiz, A.; Vasquez, M. Process Biochem. 1994, 29, 263.
    (53) Wiseman, A. Trends Biochem.Sci. 1980, 5, 102.
    (54) Jany, K. D.; Ulmer, W.; Froschle, M.; Pfleiderer, G. FEBS Lett. 1984, 165, 6.
    (55) Guengerich, F. P. molecular interventions 2003, 3, 194.
    (56) Vary, P. S. Microbiology-(UK) 1994, 140, 1001.
    (57) Urlacher, V. B.; Schmid, R. D. In Protein Eng.; Elsevier Academic Press Inc: San 97 Diego, 2004; Vol. 388, p 208.
    (58) Li, H. Y.; Poulos, T. L. Nat. Struct. Biol. 1997, 4, 140.
    (59) Li, Q. S.; Schwaneberg, U.; Fischer, P.; Schmid, R. D. Chem.-Eur. J. 2000, 6, 1531.
    (60) Miura, Y.; Fulco, A. J. Biochimica Et Biophysica Acta 1975, 388, 305.
    (61) Capdevila, J. H.; Wei, S. Z.; Helvig, C.; Falck, J. R.; Belosludtsev, Y.; Truan, G.; GrahamLorence, S. E.; Peterson, J. A. J. Biol. Chem. 1996, 271, 22663.
    (62) GrahamLorence, S.; Truan, G.; Peterson, J. A.; Falck, J. R.; Wei, S. Z.; Helvig, C.; Capdevila, J. H. J. Biol. Chem. 1997, 272, 1127.
    (63) Ruettinger, R. T.; Fulco, A. J. J. Biol. Chem. 1981, 256, 5728.
    (64) Adam, W.; Lukacs, Z.; Saha-Moller, C. R.; Weckerle, B.; Schreier, P. Eur. J. Org. Chem. 2000, 2923.
    (65) Cryle, M. J.; Matovic, N. J.; De Voss, J. J. Tetrahedron Lett. 2007, 48, 133.
    (66) Boddupalli, S. S.; Pramanik, B. C.; Slaughter, C. A.; Estabrook, R. W.; Peterson, J. A. Arch. Biochem. Biophys. 1992, 292, 20.
    (67) Poulos, T. L.; Finzel, B. C.; Howard, A. J. J. Mol. Biol. 1987, 195, 687.
    (68) Schlichting, I.; Jung, C.; Schulze, H. FEBS Lett. 1997, 415, 253.
    (69) Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev. 1996, 96, 2841.
    (70) Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994, 98, 2744.
    (71) Narhi, L. O.; Wen, L. P.; Fulco, A. J. Mol. Cell. Biochem. 1988, 79, 63.
    (72) Li, H. Y.; Darwish, K.; Poulos, T. L. J. Biol. Chem. 1991, 266, 11909.
    (73) Oster, T.; Boddupalli, S. S.; Peterson, J. A. J. Biol. Chem. 1991, 266, 22718.
    (74) Sevrioukova, I. F.; Li, H. Y.; Zhang, H.; Peterson, J. A.; Poulos, T. L. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1863.
    (75) Ravichandran, K. G.; Boddupalli, S. S.; Hasemann, C. A.; Peterson, J. A.; Deisenhofer, J. Science 1993, 261, 731.
    (76) Haines, D. C.; Tomchick, D. R.; Machius, M.; Peterson, J. A. Biochemistry 2001, 40, 13456.
    (77) Bondi, A. J. Phys. Chem. 1964, 68, 441.
    (78) Ohagan, D.; Rzepa, H. S. Chem. Commun. 1997, 645.
    (79) Wang, C.-L. J. Org. React. (N.Y.) 1985, 34, 319.
    (80) Boswell, G. A.; Ripka, W. C.; Scribner, R. M.; Tullock, C. W. Org. React. (N.Y.) 1974, 21, 1.
    (81) Tozer, M. J.; Herpin, T. F. Tetrahedron 1996, 52, 8619.
    (82) Dmowski, W. J. Fluor. Chem. 1986, 32, 255.
    (83) Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. S. J. Org. Chem. 1999, 64, 7048.
    (84) Maurer, S. C.; Schulze, H.; Schmid, R. D.; Urlacher, V. Adv. Synth. Catal. 2003, 345, 802.
    (85) De Montellano, P. R. O. cytochrome p450: structure, mechanism, and biochemistry.; 2edn ed. New york, 1995.
    (86) Sambrook, J.; Russell, D. W. Molecular Cloning: A Laboratory Manual; 3rd ed.; Cold Spring Harbor Laboratory Press: New York, 2001.
    (87) Hansen, L. H.; Knudsen, S.; Sorensen, S. J. Curr. Microbiol. 1998, 36, 341.
    (88) Omura, T.; Sato, R. J. Biol. Chem. 1964, 239, 2370.
    (89) Meinhold, P.; Peters, M. W.; Hartwick, A.; Hernandez, A. R.; Arnold, F. H. Adv. Synth. Catal. 2006, 348, 763.
    (90) Banks, R. E.; Smart, B. E.; Tatlow, J. C. Organofluorine Chemistry: Principles and Commercial Applications Plenum Pub Corp: New York, 1994.
    (91) Chambers, R. D. Fluorine in Organic Chemistry; Blackwell: Oxford, 2004.
    (92) Smith, W. C.; Tullock, C. W.; Muetterties, E. L.; Hasek, W. R.; Fawcett, F. S.; Engelhardt, V. A.; Coffman, D. D. J. Am. Chem. Soc. 1959, 81, 3165.
    (93) Hasek, W. R.; Smith, W. C.; Engelhardt, V. A. J. Am. Chem. Soc. 1960, 82, 543.
    (94) Gerstenberger, M. R. C.; Haas, A. Angew. Chem.-Int. Edit. Engl. 1981, 20, 647.
    (95) Dmowski, W.; Kaminski, M. J. Fluor. Chem. 1983, 23, 219.
    (96) Umemoto, T. Chem. Rev. 1996, 96, 1757.
    (97) Wilkinson, J. A. Chem. Rev. 1992, 92, 505.
    (98) Taylor, S. D.; Kotoris, C. C.; Hum, G. Tetrahedron 1999, 55, 12431.
    (99) Singh, R. P.; Shreeve, J. M. Synthesis 2002, 2561.
    (100) Dax, K.; Albert, M. In Glyoscience: Epimerisation, Isomerisation and Rearrangement Reactions of Carbohydrates; Springer-Verlag Berlin: Berlin, 2001; Vol. 215, p 193.
    (101) Long, Z. Y.; Chen, Q. Y. Tetrahedron Lett. 1998, 39, 8487.
    (102) Brace, N. O. J. Fluor. Chem. 2001, 108, 147.
    (103) Cloux, R.; Kovats, E. S. Synthesis 1992, 409.
    (104) Narhi, L. O.; Fulco, A. J. J. Biol. Chem. 1987, 262, 6683.
    (105) Daff, S. N.; Chapman, S. K.; Turner, K. L.; Holt, R. A.; Govindaraj, S.; Poulos, T. L.; Munro, A. W. Biochemistry 1997, 36, 13816.
    (106) Fasan, R.; Meharenna, Y. T.; Snow, C. D.; Poulos, T. L.; Arnold, F. H. J. Mol. Biol. 2008, 383, 1069.
    (107) Sawayama, A. M.; Chen, M. M. Y.; Kulanthaivel, P.; Kuo, M. S.; Hemmerle, H.; Arnold, F. H. Chem.-Eur. J. 2009, 15, 11723.
    (108) Rentmeister, A.; Arnold, F. H.; Fasan, R. Nat. Chem. Biol. 2009, 5, 26.
    (109) Cherkasov, A.; Jonsson, M. J. Chem. Inf. Comput. Sci. 2000, 40, 1222.
    (110) Ng, K. Y.; Tu, L. C.; Wang, Y. S.; Chan, S. I.; Yu, S. S. F. ChemBioChem 2008, 9, 1116.
    (111) Bohm, H. J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Muller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637.
    (112) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
    (113) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
    (114) Park, B. K.; Kitteringham, N. R.; O'Neill, P. M. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 443.
    (115) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
    (116) Ahn, K.; Johnson, D. S.; Mileni, M.; Beidler, D.; Long, J. Z.; McKinney, M. K.; Weerapana, E.; Sadagopan, N.; Liimatta, M.; Smith, S. E.; Lazerwith, S.; Stiff, C.;
    Kamtekar, S.; Bhattacharya, K.; Zhang, Y. H.; Swaney, S.; Van Becelaere, K.; Stevens, R. C.; Cravatt, B. F. Chem. Biol. 2009, 16, 411.
    (117) Chan, S. I.; Yu, S. S. F. Accounts Chem. Res. 2008, 41, 969.
    (118) Pongdee, R.; Liu, H. W. Bioorganic Chem. 2004, 32, 393.
    (119) Appel, D.; Lutz-Wahl, S.; Fischer, P.; Schwaneberg, U.; Schmid, R. D. J. Biotechnol. 2001, 88, 167.
    (120) Arnold, F. H.; Volkov, A. A. Curr. Opin. Chem. Biol. 1999, 3, 54.
    (121) Weber, E.; Seifert, A.; Antonovici, M.; Geinitz, C.; Pleiss, J.; Urlacher, V. B. Chem. Commun. 2011, 47, 944.
    (122) Truan, G.; Komandla, M. R.; Falck, J. R.; Peterson, J. A. Arch. Biochem. Biophys. 1999, 366, 192.
    (123) Cryle, M. J.; De Voss, J. J. Tetrahedron: Asymmetry 2007, 18, 547.
    (124) Montellano, P. R. O. d. Chem. Rev. 2010, 110.
    (125) Crull, G. B.; Kennington, J. W.; Garber, A. R.; Ellis, P. D.; Dawson, J. H. J. Biol. Chem. 1989, 264, 2649.
    101
    (126) Nakagawa, Y.; Irie, K.; Yanagita, R. C.; Ohigashi, H.; Tsuda, K. J. Am. Chem. Soc. 2005, 127, 5746.
    (127) Smart, B. E. J. Fluor. Chem. 2001, 109, 3.
    (128) Lide, D. R. CRC Handbook of Chemistry and Physics 90th ed.; CRC Press/Taylor and Francis: Boca Raton, 2010.
    (129) Pirkle, W. H.; House, D. W. J. Org. Chem. 1979, 44, 1957.
    (130) Pirkle, W. H.; House, D. W.; Finn, J. M. Journal of Chromatography 1980, 192, 143.
    (131) Pirkle, W. H.; Finn, J. M.; Schreiner, J. L.; Hamper, B. C. J. Am. Chem. Soc. 1981, 103, 3964.
    (132) Gilon, C.; Leshem, R.; Tapuhi, Y.; Grushka, E. J. Am. Chem. Soc. 1979, 101, 7612.
    (133) Schwab, J. M. J. Am. Chem. Soc. 1981, 103, 3614.
    (134) Dauphin, G.; Gramain, J. C.; Kergomard, A.; Renard, M. F.; Veschambre, H. Tetrahedron Lett. 1980, 21, 4275.
    (135) Leinberger, R.; Hull, W. E.; Simon, H.; Retey, J. Eur. J. Biochem. 1981, 117, 311.
    (136) Battersby, A. R.; Gutman, A. L.; Fookes, C. J. R.; Gunther, H.; Simon, H. J. Chem. Soc.-Chem. Commun. 1981, 645.
    (137) Luthy, J.; Retey, J.; Arigoni, D. Nature 1969, 221, 1213.
    (138) Eliel, E. L.; Allinger, N. L. Topics in Stereochemistry New york, 1969; Vol. 4.
    (139) Raban, M.; Mislow, K. Tetrahedron Lett. 1966, 3961.
    (140) Raban, M.; Mislow, K. In Topics in Stereochemisry; Alliner, N. L., Eliel, E., Eds.; Interscience: New York, 1967; Vol. 2, p 199.
    (141) Whitesid.Gm; Lewis, D. W. J. Am. Chem. Soc. 1971, 93, 5914.
    (142) Yu, S. S. F.; Wu, L. Y.; Chen, K. H. C.; Luo, W. I.; Huang, D. S.; Chan, S. I. J. Biol. Chem. 2003, 278, 40658.
    (143) Chan, S. I.; Chen, K. H. C.; Yu, S. S. F.; Chen, C. L.; Kuo, S. S. J. Biochemistry 2004, 43, 4421.
    (144) Elliott, S. J.; Zhu, M.; Tso, L.; Nguyen, H. H. T.; Yip, J. H. K.; Chan, S. I. J. Am. Chem. Soc. 1997, 119, 9949.
    (145) Hanessian, S.; Tehim, A.; Chen, P. J. Org. Chem. 1993, 58, 7768.
    (146) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; John Wiley & Sons: Weiheim, 2004.
    (147) Moore, J. C.; Arnold, F. H. Nat. Biotechnol. 1996, 14, 458.

    下載圖示 校內:2012-06-03公開
    校外:2012-06-03公開
    QR CODE