| 研究生: |
柯皓庭 Ko, Hao-Ting |
|---|---|
| 論文名稱: |
白蝦腸道菌群對應急性肝胰腺壞死症之弧菌病原感染的動態變化 Gut Microbiota Dynamics in Response to Acute Hepatopancreatic Necrosis Disease (AHPND)-causing Vibrio Infection in Pacific White Shrimp |
| 指導教授: |
呂曉沛
Lu, Hsiao-Pei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 急性肝胰腺壞死病 、腸道菌群 、白蝦 |
| 外文關鍵詞: | AHPND, gut microbiota, Pacific white shrimp |
| 相關次數: | 點閱:144 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
急性肝胰腺壞死症(AHPND)是由帶有質體(內含PirABvp毒素基因)的致病性副溶血弧菌所引起,會導致蝦苗在放養初期有極高的死亡率。先前研究顯示:致病性副溶血性弧菌最初會在蝦胃中增生,接著穿透蝦的胃腸道屏障,而後破壞肝胰腺。因此,蝦子感染AHPND的過程可能與胃部菌群組成的失衡有關。並且過去研究已知:AHPND爆發極為快速,可在一天內就導致蝦子死亡。因此,本研究規劃在短時間進行密集採樣來探究當蝦子感染AHPND後,其胃部菌群組成對應致病性副溶血弧菌入侵的動態變化。
本研究將蝦子分成三組進行感染實驗:1) 5HP菌株(具有PirABvp毒素基因)感染;2) S02菌株(不具PirABvp基因)感染;3) TSB對照(培養基不含任何細菌)。在三組實驗中,分別於感染後0 / 3 / 6 / 12 / 24 / 48 / 72小時之七個時間點進行蝦子胃部採樣,並採用次世代定序資料進行菌群結構分析。研究結果表明:5HP致病菌株會使蝦子胃部菌群組成產生大幅度變化,並且與S02和TSB兩組非致病組的結果有明顯差異。此外,針對5HP組追蹤腸道菌相結構隨時間的變化,發現相較於0小時的組成,菌相在感染6小時後即有明顯差異,與毒素基因上升時間點相同。相較而言,S02組直到48小時後才有改變。本篇研究發現AHPND弧菌病原感染可在短時間內造成蝦子腸道菌群組成的失衡,可能進而導致蝦子喪失正常消化生理功能。
Acute hepatopancreatic necrosis disease (AHPND) leads to high mortality in shrimp aquaculture in recent years. The pathogenesis of AHPND has been confirmed to be caused by a pathogenic bacterium, Vibrio parahaemolyticus with the plasmid-associated PirABvp toxin genes. Previous studies revealed that AHPND-causing V. parahaemolyticus initially grew in the stomach and then penetrated the gastrointestinal barriers, finally invaded into the hepatopancreas. Accordingly, the successful AHPND infection may be associated with the disorder of gut microbiota in the stomach. The AHPND infecting process in shrimp has been found to be extremely rapid and can cause shrimp death within one day. In addition, Vibrio parahaemolyticus has been confirmed to be non-pathogenic if it doesn’t contain PirABvp toxin genes. Therefore, this study attempts to investigate gut microbiota dynamics in the short time in response to AHPND-causing V. parahaemolyticus infection.
In order to detect the interactions between V. parahaemolyticu and gut microbiota, three sets of shrimp infection experiments have been conducted: 1.) 5HP strain infection (with PirABvp gene), 2.) S02 strain infection (without PirABvp gene), and 3.) TSB medium control (without any bacteria). For shrimp sampling, shrimp individuals will be collected at each of seven time points (0 hpi, 3 hpi, 6 hpi, 12 hpi, 24 hpi, 48 hpi, and 72 hpi; hpi = hours post immersion). The results showed that infection by 5HP strain would cause significant changes in shrimp gut microbiota, and taxonomic composition was significantly different from the SO2 and TSB non-pathogenic groups. Moreover, comparing the changes of gut microbiota structure over time in the 5HP group, this study found that the gut microbiota structure after 6 hpi was significantly different from the structure at 0 hpi. These results suggested that pathogenic Vibrio parahaemolyticus could affect the balance of gut microbiota in a short time. This study indicates that AHPND infection can cause an imbalance in the composition of the shrimp gut microbiota within 6 hours, which may cause the shrimp to lose normal physiological function.
Albuquerque, P., Mendes, M.V., Santos, C.L., Moradas-Ferreira, P., and Tavares, F. DNA signature-based approaches for bacterial detection and identification. Science of the Total Environment 407, 3641-3651, 2009.
Austin, B., Pride, A.C., and Rhodie, G.A. Association of a bacteriophage with virulence in Vibrio harveyi. Journal of Fish Diseases 26, 55-58, 2003.
Barák, I., and Muchová, K. The role of lipid domains in bacterial cell processes. International Journal of Molecular Sciences 14, 4050-4065, 2013.
Bravo, A., Gill, S.S., and Soberon, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423-435, 2007.
Butt, R.L., and Volkoff, H. Gut Microbiota and Energy Homeostasis in Fish. Frontiers in Endocrinology (Lausanne) 10, 9, 2019.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., and Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581-583, 2016.
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335-336, 2010.
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., and Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America 108, 4516-4522, 2011.
Case, R.J., Boucher, Y., Dahllöf, I., Holmström, C., Doolittle, W.F., and Kjelleberg, S. Use of 16S rRNA and Genes as Molecular Markers for Microbial Ecology Studies. Applied and Environmental Microbiology 73, 278-288, 2007.
Caspi, R., Altman, T., Dale, J.M., Dreher, K., Fulcher, C.A., Gilham, F., Kaipa, P., Karthikeyan, A.S., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L.A., Paley, S., Popescu, L., Pujar, A., Shearer, A.G., Zhang, P., and Karp, P.D. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research 38, D473-D479, 2009.
Chao, A. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265-270, 1984.
Chen, W.Y., Ng, T.H., Wu, J.H., Chen, J.W., and Wang, H.C. Microbiome Dynamics in a Shrimp Grow-out Pond with Possible Outbreak of Acute Hepatopancreatic Necrosis Disease. Scientific Reports 7, 9395, 2017.
Ciarlo, E., Heinonen, T., Herderschee, J., Fenwick, C., Mombelli, M., Le Roy, D., and Roger, T. Impact of the microbial derived short chain fatty acid propionate on host susceptibility to bacterial and fungal infections in vivo. Scientific Reports 6, 37944, 2016.
Clayton, J.B., Vangay, P., Huang, H., Ward, T., Hillmann, B.M., Al-Ghalith, G.A., Travis, D.A., Long, H.T., Tuan, B.V., Minh, V.V., Cabana, F., Nadler, T., Toddes, B., Murphy, T., Glander, K.E., Johnson, T.J., and Knights, D. Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences of the United States of America 113, 10376-10381, 2016.
Cornejo-Granados, F., Lopez-Zavala, A.A., Gallardo-Becerra, L., Mendoza-Vargas, A., Sanchez, F., Vichido, R., Brieba, L.G., Viana, M.T., Sotelo-Mundo, R.R., and Ochoa-Leyva, A. Microbiome of Pacific Whiteleg shrimp reveals differential bacterial community composition between Wild, Aquacultured and AHPND/EMS outbreak conditions. Scientific Reports 7, 11783, 2017.
Dai, W., Yu, W., Zhang, J., Zhu, J., Tao, Z., and Xiong, J. The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp. Applied Microbiology and Biotechnology 101, 6447-6457, 2017.
Daniel, H., Gholami, A.M., Berry, D., Desmarchelier, C., Hahne, H., Loh, G., Mondot, S., Lepage, P., Rothballer, M., Walker, A., Bohm, C., Wenning, M., Wagner, M., Blaut, M., Schmitt-Kopplin, P., Kuster, B., Haller, D., and Clavel, T. High-fat diet alters gut microbiota physiology in mice. The International Society for Microbial Ecology Journal 8, 295-308, 2014.
Dray, S., Legendre, P., and Peres-Neto, P.R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196, 483-493, 2006.
Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E., and Relman, D.A. Diversity of the Human Intestinal Microbial Flora. Science 308, 1635-1638, 2005.
Engel, P., and Moran, N.A. The gut microbiota of insects - diversity in structure and function. Federation of European Microbiological Societies Microbiology Reviews 37, 699-735, 2013.
Fouz, B., Larsen, J., Nielsen, B., Barja, J., and Toranzo, A. Characterization of Vibrio damsela strains isolated from turbot Scophthalmus maximus in Spain. Diseases of Aquatic Organisms 12, 155-166, 1992.
Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A., and Olsen, G.J. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology 74, 2461-2470, 2008.
Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., and Nelson, K.E. Metagenomic Analysis of the Human Distal Gut Microbiome. Science 312, 1355-1359, 2006.
Gillett, R. Global Study of Shrimp Fisheries. Fish Bethesda 475, 9-14, 2008.
Hameed, A.S. A study of the aerobic heterotrophic bacterial flora of hatchery-reared eggs, larvae and post-larvae of Penaeus indicus. Aquaculture 117, 195-204, 1993.
He, S., Wang, Q., Li, S., Ran, C., Guo, X., Zhang, Z., and Zhou, Z. Antibiotic growth promoter olaquindox increases pathogen susceptibility in fish by inducing gut microbiota dysbiosis. Science China Life Sciences 60, 1260-1270, 2017.
Hird, S.M., Sanchez, C., Carstens, B.C., and Brumfield, R.T. Comparative Gut Microbiota of 59 Neotropical Bird Species. Frontiers in Microbiology 6, 1403, 2015.
Holt, C.C., Bass, D., Stentiford, G.D., and van der Giezen, M. Understanding the role of the shrimp gut microbiome in health and disease. Journal of Invertebrate Pathology, 107387, 2020.
Hong, X., Lu, L., and Xu, D. Progress in research on acute hepatopancreatic necrosis disease (AHPND). Aquaculture International 24, 577-593, 2015.
Hooper, L.V., and Macpherson, A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Reviews Immunology 10, 159-169, 2010.
Hooper, L.V., Midtvedt, T., and Gordon, J.I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annual Review of Nutrition 22, 283-307, 2002.
Häse, C.C., and Finkelstein, R.A. Bacterial extracellular zinc-containing metalloproteases. Microbiological Reviews 57, 823-837, 1993.
Hou, D., Huang, Z., Zeng, S., Liu, J., Wei, D., Deng, X., Weng, S., Yan, Q., and He, J. Intestinal bacterial signatures of white feces syndrome in shrimp. Applied Microbiology and Biotechnology 102, 3701-3709, 2018.
Huang, Z., Li, X., Wang, L., and Shao, Z. Changes in the intestinal bacterial community during the growth of white shrimp,Litopenaeus vannamei. Aquaculture Research 47, 1737-1746, 2016.
Hugenholtz, P., Goebel, B.M., and Pace, N.R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology 180, 4765-4774, 1998.
Hullar, M.A.J., and Fu, B.C. Diet, the Gut Microbiome, and Epigenetics. The Cancer Journal 20, 170-175, 2014.
Ihekweazu, F.D., and Versalovic, J. Development of the Pediatric Gut Microbiome: Impact on Health and Disease. The American Journal of the Medical Sciences 356, 413-423, 2018.
Joshi, J., Srisala, J., Truong, V.H., Chen, I.T., Nuangsaeng, B., Suthienkul, O., Lo, C.F., Flegel, T.W., Sritunyalucksana, K., and Thitamadee, S. Variation in Vibrio parahaemolyticus isolates from a single Thai shrimp farm experiencing an outbreak of acute hepatopancreatic necrosis disease (AHPND). Aquaculture 428, 297-302, 2014.
Kalia, V.C., Kumar, P., Kumar, R., Mishra, A., and Koul, S. Genome Wide Analysis for Rapid Identification of Vibrio Species. Indian Journal of Microbiology 55, 375-383, 2015.
Knight, R., Callewaert, C., Marotz, C., Hyde, E.R., Debelius, J.W., McDonald, D., and Sogin, M.L. The Microbiome and Human Biology. Annual Review of Genomics and Human Genetics 18, 65-86, 2017.
Kolbert, C.P., and Persing, D.H. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Current Opinion in Microbiology 2, 299-305, 1999.
Kostanjšek, R., Štrus, J., and Avguštin, G. “Candidatus Bacilloplasma,” a Novel Lineage of Mollicutes Associated with the Hindgut Wall of the Terrestrial Isopod Porcellio scaber (Crustacea: Isopoda). Applied and Environmental Microbiology 73, 5566-5573, 2007.
Kumar, R., Ng, T.H., Chang, C.C., Tung, T.C., Lin, S.S., Lo, C.F., and Wang, H.C. Bile acid and bile acid transporters are involved in the pathogenesis of acute hepatopancreatic necrosis disease in white shrimp Litopenaeus vannamei. Cellular Microbiology 22, e13127, 2020a.
Kumar, R., Ng, T.H., and Wang, H.C. Acute hepatopancreatic necrosis disease in penaeid shrimp. Reviews in Aquaculture 12, 1867-1880, 2020b.
Kurokawa, K., Itoh, T., Kuwahara, T., Oshima, K., Toh, H., Toyoda, A., Takami, H., Morita, H., Sharma, V.K., Srivastava, T.P., Taylor, T.D., Noguchi, H., Mori, H., Ogura, Y., Ehrlich, D.S., Itoh, K., Takagi, T., Sakaki, Y., Hayashi, T., and Hattori, M. Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes. DNA Research 14, 169-181, 2007.
Labella, A., Alonso, C.M., Manchado, M., Castro, D., Borrego, J.J., and Barnette, P. The First Isolation of Photobacterium damselae subsp. damselae from Asian Seabass Lates calcarifer. Fish Pathology 44, 47-50, 2009.
Lai, H.C., Ng, T.H., Ando, M., Lee, C.T., Chen, I.T., Chuang, J.C., Mavichak, R., Chang, S.H., Yeh, M.D., Chiang, Y.A., Takeyama, H., Hamaguchi, H.O., Lo, C.F., Aoki, T., and Wang, H.C. Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimp. Fish and Shellfish Immunology 47, 1006-1014, 2015.
Landsman, A. Shrimp Production Environment and the Gut Microbiome: Effects of Aquaculture Practices and Selective Breeding on the Gut Microbiome of Pacific Whiteleg Shrimp, Litopenaeus vannamei. Electronic Theses and Dissertations 122, 3360, 2019.
Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., Beiko, R.G., and Huttenhower, C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 31, 814-821, 2013.
Lee, C.T., Chen, I.T., Yang, Y.T., Ko, T.P., Huang, Y.T., Huang, J.Y., Huang, M.F., Lin, S.J., Chen, C.Y., Lin, S.S., Lightner, D.V., Wang, H.C., Wang, A.H., Wang, H.C., Hor, L.I., and Lo, C.F. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proceedings of the National Academy of Sciences of the United States of America 112, 10798-10803, 2015.
Lee, J.H., Ahn, S.H., Lee, E.M., Kim, Y.O., Lee, S.J., and Kong, I.S. Characterization of the enzyme activity of an extracellular metalloprotease (VMC) from Vibrio mimicus and its C-terminal deletions. Federation of European Microbiological Societies Microbiology Letters 223, 293-300, 2003.
Lee, W.J., and Hase, K. Gut microbiota–generated metabolites in animal health and disease. Nature Chemical Biology 10, 416-424, 2014.
Li, E., Xu, C., Wang, X., Wang, S., Zhao, Q., Zhang, M., Qin, J.G., and Chen, L. Gut Microbiota and its Modulation for Healthy Farming of Pacific White Shrimp Litopenaeus vannamei. Reviews in Fisheries Science and Aquaculture 26, 381-399, 2018.
Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., Arumugam, M., Kultima, J.R., Prifti, E., Nielsen, T., Juncker, A.S., Manichanh, C., Chen, B., Zhang, W., Levenez, F., Wang, J., Xu, X., Xiao, L., Liang, S., Zhang, D., Zhang, Z., Chen, W., Zhao, H., Al-Aama, J.Y., Edris, S., Yang, H., Wang, J., Hansen, T., Nielsen, H.B., Brunak, S., Kristiansen, K., Guarner, F., Pedersen, O., Doré, J., Ehrlich, S.D., Pons, N., Le Chatelier, E., Batto, J.-M., Kennedy, S., Haimet, F., Winogradski, Y., Pelletier, E., LePaslier, D., Artiguenave, F., Bruls, T., Weissenbach, J., Turner, K., Parkhill, J., Antolin, M., Casellas, F., Borruel, N., Varela, E., Torrejon, A., Denariaz, G., Derrien, M., van Hylckama Vlieg, J.E.T., Viega, P., Oozeer, R., Knoll, J., Rescigno, M., Brechot, C., M'Rini, C., Mérieux, A., Yamada, T., Tims, S., Zoetendal, E.G., Kleerebezem, M., de Vos, W.M., Cultrone, A., Leclerc, M., Juste, C., Guedon, E., Delorme, C., Layec, S., Khaci, G., van de Guchte, M., Vandemeulebrouck, G., Jamet, A., Dervyn, R., Sanchez, N., Blottière, H., Maguin, E., Renault, P., Tap, J., Mende, D.R., Bork, P., Wang, J., and Meta, H.I.T.C. An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology 32, 834-841, 2014.
Lightner, D.V., and Redman, R.M. An epizootic of necrotizing hepatopancreatitis in cultured penaeid shrimp (Crustacea: Decapoda) in northwestern Peru. Aquaculture 122, 9-18, 1994.
Lin, S.J., Hsu, K.C., and Wang, H.C. Structural Insights into the Cytotoxic Mechanism of Vibrio parahaemolyticus PirA(vp) and PirB(vp) Toxins. Marine Drugs 15, 373, 2017.
Liu, F., Liu, G., and Li, F. Characterization of two pathogenic Photobacterium strains isolated from Exopalaemon carinicauda causing mortality of shrimp. Aquaculture 464, 129-135, 2016.
Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A.B., Brady, A., Creasy, H.H., McCracken, C., Giglio, M.G., McDonald, D., Franzosa, E.A., Knight, R., White, O., and Huttenhower, C. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61-66, 2017.
Lozupone, C.A., Hamady, M., Kelley, S.T., and Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology 73, 1576-1585, 2007.
Madden, T.L., Tatusov, R.L., and Zhang, J. Applications of network BLAST server. Methods in Enzymology 266, 131-141. 1996.
Mallon, C.A., Elsas, J.D.v., and Salles, J.F. Microbial Invasions: The Process, Patterns, and Mechanisms. Trends in Microbiology 23, 719-729, 2015.
Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, B.C., He, W., Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alenquer, M.L., Jarvie, T.P., Jirage, K.B., Kim, J.B., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu, H., Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W., Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley, R.F., and Rothberg, J.M. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376-380, 2005.
Merritt, M.E., and Donaldson, J.R. Effect of bile salts on the DNA and membrane integrity of enteric bacteria. Journal of Medical Microbiology 58, 1533-1541, 2009.
Neis, E.P.J.G., Dejong, C.H.C., and Rensen, S.S. The Role of Microbial Amino Acid Metabolism in Host Metabolism. Nutrients 7, 2930-2946, 2015.
Ng, T.H., Lu, C.W., Lin, S.S., Chang, C.C., Tran, L.H., Chang, W.C., Lo, C.F., and Wang, H.C. The Rho signalling pathway mediates the pathogenicity of AHPND-causing V. parahaemolyticus in shrimp. Cellular Microbiology 20, e12849, 2018.
Penttinen, R., Kinnula, H., Lipponen, A., Bamford, J.K., and Sundberg, L.R. High Nutrient Concentration Can Induce Virulence Factor Expression and Cause Higher Virulence in an Environmentally Transmitted Pathogen. Microbial Ecology 72, 955-964, 2016.
Qiao, F., Liu, Y.K., Sun, Y.H., Wang, X.D., Chen, K., Li, T.Y., Li, E.C., and Zhang, M.L. Influence of different dietary carbohydrate sources on the growth and intestinal microbiota of Litopenaeus vannamei at low salinity. Aquaculture Nutrition 23, 444-452, 2017.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, D590-D596, 2012.
Ringø, E., Zhou, Z., Vecino, J.L.G., Wadsworth, S., Romero, J., Krogdahl, Å., Olsen, R.E., Dimitroglou, A., Foey, A., Davies, S., Owen, M., Lauzon, H.L., Martinsen, L.L., De Schryver, P., Bossier, P., Sperstad, S., and Merrifield, D.L. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquaculture Nutrition 22, 219-282, 2016.
Roeselers, G., Mittge, E.K., Stephens, W.Z., Parichy, D.M., Cavanaugh, C.M., Guillemin, K., and Rawls, J.F. Evidence for a core gut microbiota in the zebrafish. The International Society for Microbial Ecology Journal 5, 1595-1608, 2011.
Ruangpan, L., and Kitao, T. Vibrio bacteria isolated from black tiger shrimp, Penaeus monodon Fabricius. Journal of Fish Diseases 14, 383-388, 1991.
Rungrassamee, W., Klanchui, A., Maibunkaew, S., and Karoonuthaisiri, N. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure. Journal of Invertebrate Pathology 133, 12-19, 2016.
Schmidt, T.M., DeLong, E.F., and Pace, N.R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. Journal of Bacteriology 173, 4371-4378, 1991.
Silhavy, T.J., Kahne, D., and Walker, S. The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology 2, a000414, 2010.
Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., and Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition and Food Research 61, 1600240, 2017.
Soto-Rodriguez, S.A., Gomez-Gil, B., Lozano-Olvera, R., Betancourt-Lozano, M., and Morales-Covarrubias, M.S. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Applied and Environmental Microbiology 81, 1689-1699, 2015.
Stackebrandt, E., Murray, R.G.E., and Trüper, H.G. Proteobacteria classis nov., a Name for the Phylogenetic Taxon That Includes the “Purple Bacteria and Their Relatives”. International Journal of Systematic and Evolutionary Microbiology 38, 321-325, 1988.
Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D.R., Alberti, A., Cornejo-Castillo, F.M., Costea, P.I., Cruaud, C., d'Ovidio, F., Engelen, S., Ferrera, I., Gasol, J.M., Guidi, L., Hildebrand, F., Kokoszka, F., Lepoivre, C., Lima-Mendez, G., Poulain, J., Poulos, B.T., Royo-Llonch, M., Sarmento, H., Vieira-Silva, S., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Bowler, C., de Vargas, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Jaillon, O., Not, F., Ogata, H., Pesant, S., Speich, S., Stemmann, L., Sullivan, M.B., Weissenbach, J., Wincker, P., Karsenti, E., Raes, J., Acinas, S.G., and Bork, P. Structure and function of the global ocean microbiome. Science 348, 1261359, 2015.
Suo, Y., Li, E., Li, T., Jia, Y., Qin, J.G., Gu, Z., and Chen, L. Response of gut health and microbiota to sulfide exposure in Pacific white shrimp Litopenaeus vannamei. Fish and Shellfish Immunology 63, 87-96, 2017.
Tran, L., Nunan, L., Redman, R.M., Mohney, L.L., Pantoja, C.R., Fitzsimmons, K., and Lightner, D.V. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of Aquatic Organisms 105, 45-55, 2013.
Urdaneta, V., and Casadesús, J. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Frontiers in Medicine 4, 163, 2017.
V. Wintzingerode, F., Göbel, U.B., and Stackebrandt, E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. Federation of European Microbiological Societies Microbiology Reviews 21, 213-229, 1997.
Vaseeharan, B., Sundararaj, S., Murugan, T., and Chen, J. Photobacterium damselae ssp. damselae associated with diseased black tiger shrimp Penaeus monodon Fabricius in India. Letters in Applied Microbiology 45, 82-86, 2007.
Wakita, Y., Shimomura, Y., Kitada, Y., Yamamoto, H., Ohashi, Y., and Matsumoto, M. Taxonomic classification for microbiome analysis, which correlates well with the metabolite milieu of the gut. Biomed Central Genomics Microbiology 18, 188, 2018.
Walter, J., Maldonado-Gomez, M.X., and Martinez, I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Current Opinion in Biotechnology 49, 129-139, 2018.
Walters, W., Hyde, E.R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A., Gilbert, J.A., Jansson, J.K., Caporaso, J.G., Fuhrman, J.A., Apprill, A., and Knight, R. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems 1, e00009-00015, 2015.
Wan, L., Wang, J., Gao, F., Yang, S., and Wang, N. Bacterial flora in intestines of white leg shrimp (Penaeus vannamei Booen). Fisheries Science 25, 13-15, 2006.
Wang, C., Zhou, Y., Lv, D., Ge, Y., Li, H., and You, Y. Change in the intestinal bacterial community structure associated with environmental microorganisms during the growth of Eriocheir sinensis. MicrobiologyOpen 8, e00727, 2019.
Weissenbach, J., and Sghir, A. Microbiotes et métagénomique. Medical Sciences (Paris) 32, 937-943, 2016.
Woese, C.R., Kandler, O., and Wheelis, M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America 87, 4576-4579, 1990.
Xiong, J. Progress in the gut microbiota in exploring shrimp disease pathogenesis and incidence. Applied Microbiology and Biotechnology 102, 7343-7350, 2018.
Xiong, J., Dai, W., and Li, C. Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Applied Microbiology and Biotechnology 100, 6947-6954, 2016.
Xiong, J., Dai, W., Zhu, J., Liu, K., Dong, C., and Qiu, Q. The Underlying Ecological Processes of Gut Microbiota Among Cohabitating Retarded, Overgrown and Normal Shrimp. Microbial Ecology 73, 988-999, 2017a.
Xiong, J., Wang, K., Wu, J., Qiuqian, L., Yang, K., Qian, Y., and Zhang, D. Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Applied Microbiology and Biotechnology 99, 6911-6919, 2015.
Xiong, J., Zhu, J., Dai, W., Dong, C., Qiu, Q., and Li, C. Integrating gut microbiota immaturity and disease-discriminatory taxa to diagnose the initiation and severity of shrimp disease. Environmental Microbiology 19, 1490-1501, 2017b.
Xiong, J., Zhu, J., and Zhang, D. The application of bacterial indicator phylotypes to predict shrimp health status. Applied Microbiology and Biotechnology 98, 8291-8299, 2014.
Yang, L., Bian, G., and Zhu, W.Y. Interactions between the monogastric animal gut microbiota and the intestinal immune function - a review. Acta Microbiologica Sinica 54, 480-486, 2014.
Yu, W., Wu, J.H., Zhang, J., Yang, W., Chen, J., and Xiong, J. A meta-analysis reveals universal gut bacterial signatures for diagnosing the incidence of shrimp disease. Federation of European Microbiological Societies Microbiol Ecology 94, 147, 2018.
Zhang, M., Sun, Y., Chen, K., Yu, N., Zhou, Z., Chen, L., Du, Z., and Li, E. Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture 434, 449-455, 2014.
Zhang, M., Sun, Y., Liu, Y., Qiao, F., Chen, L., Liu, W.T., Du, Z., and Li, E. Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture 454, 72-80, 2016.
Zhang, Z., Yu, Y.X., Wang, K., Wang, Y.G., Jiang, Y., Liao, M.J., and Rong, X.J. First report of skin ulceration caused by Photobacterium damselae subsp. damselae in net-cage cultured black rockfish (Sebastes schlegeli). Aquaculture 503, 1-7, 2019.
Zheng, Y., Yu, M., Liu, J., Qiao, Y., Wang, L., Li, Z., Zhang, X.H., and Yu, M. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei) Larvae and Rearing Water across Different Growth Stages. Frontiers in Microbiology 8, 1362, 2017.
Zhou, J., Fang, W., Yang, X., Zhou, S., Hu, L., Li, X., Qi, X., Su, H., and Xie, L. A nonluminescent and highly virulent Vibrio harveyi strain is associated with "bacterial white tail disease" of Litopenaeus vannamei shrimp. Proceedings of the National Academy of Sciences of the United States of America 7, e29961, 2012.