簡易檢索 / 詳目顯示

研究生: 翁碩駿
Weng, Shuo-Chun
論文名稱: 鎂合金之鋁電鍍及其耐蝕性質研究
Corrosion behavior of Al-electroplated magnesium alloy
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 104
中文關鍵詞: 鎂合金電鍍鋁離子液體菸鹼酸極化曲線
外文關鍵詞: magnesium alloy, electroplated aluminum, ionic liquid, nicotinic acid, polarization resistance
相關次數: 點閱:105下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中藉由電化學沉積法成功的於AlCl3-EMIC離子液體為基底鍍液,在面積4平方公分的鎂合金製備具有附著性與耐蝕性的鋁鍍層。前處理、添加劑、析鍍電位對鋁鍍層之性質影響,在本文中皆加以探討。在各種不同條件下所製備之鍍層,利用掃描式電子顯微鏡(SEM)觀察鍍層的表面形貌,以橫截面分析鋁鍍層的厚度與附著性。鍍層之化學組成則藉由能量散佈分析儀(EDS)量測,其晶體結構則以X光繞射儀(XRD)進行分析。在電化學測試方面,選擇在3.5 wt% 氯化鈉水溶液進行開路電位、動電位極化曲線及交流阻抗頻譜量測。
    實驗結果顯示,利用研磨處理無法得到具附著性的鋁鍍層,無法有效去除鎂合金基材表面的氧化層,藉由鎂合金基材在離子液體鍍液內,以+1.5 VAl陽極溶解三分鐘,鎂合金基材表面氧化層與鍍液反應,逐漸溶解至鍍液內,達到移除氧化層的目的,得到適合電鍍的鎂合金表面,經電鍍鋁後得到具附著性的鋁鍍層,顯示陽極溶解為有效地前處理。
    鎂合金基材於AlCl3-EMIC離子液體內,經過陽極溶解前處理再析鍍鋁的鍍層,結晶物形貌為板狀,沉積的優選方位為(111)面,隨析鍍電位提高,結晶物尺寸變更細小,提高鍍層厚度均勻性與減少內部針孔。鎂合金基材於添加菸鹼酸的離子液體內,經過陽極溶解前處理再析鍍鋁的鍍層,結晶物為顆粒狀,沉積的優選方位為(200)面,菸鹼酸的羧酸為拉電子基,使吡啶的氮原子的電子密度下降,電鍍時,陰極表面會吸附陽離子,菸鹼酸由於本身所帶電荷與電場作用,吸附於陰極表面影響鋁沉積,使結晶物形貌由板狀便顆粒狀,消除鍍層內針孔,得到厚度均勻的鍍層,因此菸鹼酸為具有整平劑的作用。
    在3.5 wt% 氯化鈉水溶液中,以AlCl3-EMIC離子液體為鍍液,鋁鍍層在陽極區域溶解速率隨析鍍電位提高有較慢趨勢,代表鋁鍍層展現保護性,但因為鍍層內部充滿孔隙,提供氯化鈉水溶液滲透到鎂基材通路,鎂基材遭受腐蝕,溶解至氯化鈉水溶液。電化學交流阻抗測試,鋁鍍層阻抗值小於基材,顯示鋁鍍層無法抵抗腐蝕因子,使水溶液可與新鮮鎂合金金基材反應,造成阻抗值未提升。以添加菸鹼酸之AlCl3-EMIC離子液體為鍍液,鋁鍍層之開路電位維持穩定,在陽極區域出現鈍化區,顯示在相同電位環境下,可以有效降低腐蝕速率。電化學交流阻抗測試,隨析鍍電位提高,鍍層阻抗也提高,顯示當析鍍電位較大時,鋁鍍層耐蝕性質最佳。

    Al coating on magnesium (Mg) alloy with a large dimension of surface area was attempted by employing ionic liquid electrodeposition. The electrolyte used was AlCl3-EMIC ionic liquid with a molar ratio of 2:1. The effects of surface pretreatment, nicotinic acid addition and electrodeposition potential on the properties of Al coating were focused. The surface morphology of Al coating was examined by a scanning electron microscope (SEM), while its crystal structure was analyzed by X-ray diffraction. The corrosion performances of the Mg alloy with and without Al coating were evaluated by conducting various electrochemical measurements in 3.5 wt% NaCl solution. The experimental results showed that anodic polarization prior to electrodeposition was beneficial in improving the adhesion of Al coating on the Mg alloy substrate. The addition of nicotinic acid into the ionic liquid electrolyte further modifying the surface roughness of the coating. The results of potentiodynamic polarization tests in 3.5 wt% NaCl solution showed that the corrosion resistance of the Mg alloy studied could be substantially improved by Al coating. The passivation behavior of Al coating depended on the electrodeposition potential applied. A maximum polarization resistance of 86500 Ω-cm2 was determined by electrochemical impedance spectroscopy (EIS), which was about two order of magnitude higher than that of the bare Mg alloy studied.

    摘要 I Extended Abstract III 誌謝 X 總目錄 XI 表目錄 XIV 圖目錄 XV 第一章 、前言 1 第二章 、文獻回顧及背景資料 4 2.1 鎂合金簡介 4 2.1.1 鎂合金之命名法則 4 2.1.2 鎂合金的優勢 4 2.1.3 鎂合金的腐蝕 6 2.2 鎂合金常見表面耐蝕處理 7 2.2.1 化成處理 7 2.2.2 陽極化處理 8 2.3 室溫離子液體簡介 9 2.3.1 何謂室溫離子液體(room-temperature ionic liquid) 9 2.3.2 室溫離子液體性質 9 2.3.3 室溫離子液體優點 11 2.4 AlCl3-EMIC離子液體 11 2.4.1 AlCl3-EMIC離子液體在電鍍技術上應用 14 第三章 、研究方法及步驟 28 3.1 實驗材料 28 3.1.1 電鍍儀器與裝置 28 3.1.2 電鍍液配製 30 3.1.3 純鋁鍍層的製備 31 3.2 鋁鍍層之材料特性分析 32 3.2.1 微觀組織鑑定與成分分析 32 3.2.2 結晶結構分析 32 3.2.3 鋁鍍層耐蝕性質測試 33 第四章 、結果與討論 39 4.1 鍍液之基本性質 39 4.1.1 AlCl3-EMIC離子液體之循環伏安曲線測試 39 4.2 電鍍試片前處理的影響 41 4.2.1 研磨前處理 41 4.2.2 陽極溶解 42 4.2.2.1 表面形貌 42 4.2.2.2 鎂合金基材於陽極溶解觀測 42 4.2.3 析鍍電位的影響 43 4.2.3.1 表面形貌 44 4.2.3.2 結晶結構 44 4.3 菸鹼酸添加的影響 46 4.3.1 析鍍電位的影響 47 4.3.1.1 表面形貌 47 4.3.1.2 結晶結構 48 4.4 鍍層腐蝕電化學分析 49 4.4.1 菸鹼酸添加的影響 49 4.4.2 析鍍電位的影響 50 第五章 、結論 97 參考文獻 98

    1 G.L. Maker, J. Kruger, “Corrosion studies of rapidly solidified magnesium alloys”, Journal of the Electrochemical Society, 137, 2, (1990), pp.414-421.
    2 H. Inoue, K. Sugahara, A. Yamamoto, H. Tsubakino, “Corrosion rate of magnesium and its alloys in buffered chloride solutinos”,
    Corrosion Science, 44, (2000), pp.603-610.
    3 C. D. Yim, K. S. Shin, “Semi-solid processing of magnesium alloys”, Materials transaction, 44, 4, (2003), p.558.
    4 G. Song, “Corrosion mechanisms of magnesium alloys”,
    Advance Engineering Material, 1, (1999), p.11.
    5 H.Y. Hsiao, W.T. Tsai, “Characterization of anodic films formed on AZ91D magnesium alloy”, Surface and Coatings Technology, 190, 2-3, (2005), pp.299-308.
    6 G.P. Bierwagen, “Reflections on corrosion control by organic coatings”, Progress in Organic Coatings, 28, (1996), p.43.
    7 F. Endres, “Ionic liquids: solvents for the electrodepositionof metals and semiconductors”, ChemPhysChem, 3, (2002), pp.144-154.
    8 Y. Katayama, Electrochemical aspects of ionioc liquid, Tokyo University of Agriculture Technology, Tokyo, Japan, 2005.
    9 J.K. Chang, S.Y. Chen, W.T. Tsai, M.J. Deng, I.W. Sun, “Improved Corrosion Resistance of Magnesium Alloy with a surface aluminum coating electrodeposited in ionic liquid”, Journal of the Electrochemical Society, 155, 3, (2008), pp.C112-C116.
    10 S.J. Pan, W.T. Tsai, J.C. Kuo, I.W. Sun, “Material characteristics and corrosion performance of heat-treated Al-Zn coatings electrodeposited on AZ91D magnesium alloy from ionic liquid”, Journal of the Electrochemical Society, 160, 8, (2013), pp.D320-D325.
    11 M.H. Chuang, J.K. Chang, P.J. Tsai, W.T. Tsai, M.J. Deng and I.W. Sun,
    “Heat-treatment induced material property variations of Al-coated Mg alloy prepared in aluminum chloride/1-ethyl-3-methylimidazolium chloride ionic liquid”, Surface & Coatings Technology, 205, (2010), pp.200-204.
    12 S.J. Pan, W.T. Tsai, I.W. Sun, “Electrodeposition of Al-Zn on magnesium alloy from ZnCl2-containing ionic liquids”, Elctrochemical and Solid-State Letters, 13, 9, (2010), pp.D69-D71.
    13 S.J. Pan, W.T. Tsai, J.K. Chang and I.W. Sun, “Co-depositionof Al-Zn AZ91D magnesium alloy in AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid”, Electrochimica Acta, 55, (2010), pp.2158-2162.
    14 J.K. Chang, S.Y. Chen, C.H. Tseng, W.T. Tsai, M.J. Deng, I.W. Sun, “Electrodeposition of Al on magnesium from aluminum chloride/1-ethyl-3-methylimidazolium chloride ionic liquid”, Electrochemistry, 77, (2009), pp.585-587.
    15 M. Pourbaix, Atlas of electrochemical equilibria in aqueous solution, NACE, Houston, TX, USA, 1974.
    16 ASTM B275.
    17 J.H. Nordlien, S. Ono, N. Masuko, K. Nisancioglu, “A TEM investigation of naturally formed oxide films on pure magnesium,” Corrosion Science, 39, 8, (1997), pp.1397-1414.
    18 M.M Avedesian, H. Baker, “Magnesium and magnesium alloys, ASM Specialty Handbook”, ASM International, Materials Park, OH, USA (1999), p.194.
    19 R. Ambat, N.N. Aung, W. Zhou, “Evaluation of microstructure effects on corrosion behavior of AZ91D magnesium alloy”, Corrosion Science, 42, (2000), pp.1433-1455.
    20 G. Song, A. Atrems, X. Wu, B. Zhang, “Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride”, Corrosion science, 40 ,10, (1998), pp.1769-1791.
    21 H. Inoue, K. Sugahara, A. Yamamoto, H. Tsubakino, “Corrosion rate of magnesium and its alloys in buffered chloride solutinos”, Corrosion Science, 44, (2000), pp.603-610.
    22 G. L. Maker, J. Kruger, “Corrosion studies of rapidly solidified magnesium alloys”, Journal of the Electrochemical Society, 137 , 2, (1990), pp.414-421.
    23 J. Vaughan, D. Dreisinger, “Electrodeposition of aluminum from aluminum chloride-trihexy(tetradecyl) phosphonium chloride”, Journal of the Electrochemical Society, 115 , 1, (2008), pp.D68-D72.
    24 A. L. Rudd, C. B. Breslin, F. Mansfeld, “The corrosion protection afforded by rare earth conversion coatings applied to magnesium”, Corrosion Science, 42, (2000), pp.275-288.
    25 R.L. Perry, K.M. Jones, W.D. Scott, Q. Liao, C.L. Hussey, “Densities,
    viscosities, and conductivities of mixtures of selected organic cosolvents
    with the lewis basic aluminum chloride + 1-methyl-3-ethylimidazolium
    chloride molten salt”, Journal of Chemical and Engineering Data, 40,
    (1995), pp.615-619
    26 E. Fitzer, K.H. Kochling, H.P. Boehm, H. Marsh, “Recommended terminology for the description of carbon as a solid”, Pure and Applied Chemistry, 67, 3, (1995), pp.473-506.
    27 W.R. Pitner, C.L. Hussey, “Electrodeposition of zinc from the lewis
    acidic aluminum chloride-i -methyl-3-ethylimidazolium chloride
    room temperature molten salt”, Journal of the Electrochemical Society, 144 , 9, (1997), pp.3095-3103.
    28 A.P. Abbott, K.J. McKenzie, “Application of ionic liquids to the
    electrodeposition of metals”, Physical Chemistry Chemical Physics, 8, (2006), pp.426-4279.
    29 Q. Zhang, Q. Wang, S. Zhang, X, Liu, “Effect of nicotinamide on electrodeposition of Al from aluminium chloride-1-butyl-3-methylimidazolium chloride ionic liquids”, Journal of Solid State Electrochemistry, 18, 1, (2014), pp.257-267.
    30 陳欣蘋,“顯微組織對壓鑄AZ91D鎂合金之腐蝕行為研究”,國立成功大學材料科學及工程學系碩士論文,(2002)。
    31 B. Xu, J. Chen, G. Ling, “Viscous layer formed in the anodic electrolyte etching of reactive metals in ionic liquid”, Electrochemical and Solid-State Letter, 15, 1, (2012), pp.D1-D3.
    32 D. Pradhan, R.G. Reddy, A .Lahiri, “Low-temperature production of Ti-Al alloys using ionic liquid electrolytes: effect of process variable on current density, current efficiency, and deposit morphology”, Metallurgical and Material Transaction B, 40, (2009), pp.114-122.
    33 T. Jiang, M.J. Chollier Brym, G. Dude, A. Lasia, G.M. Brisard, “Electrodeposition of aluminum from ionic liquids: Part I- electrodeposition and surface morphology of aluminum from aluminum chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride (EMImCl) ionic liquid”, Surface and Coatings Technology, 201, (2006), pp.1-9.
    34 A.M. El-Sherik, U. Erb, J. Page, “Microstructural evolution in pulse plated nickel electrodeposits”, Surface and Coatings Technology, 88, (1996), pp.70-78.
    35 F. Czerwinski, J.A. Szpunar, “Controlling the surface texture of nickel for hightemperature oxidation inhibition”, Corrosion Science, 41, (1999), pp.729-740.
    36 Q. Wang, Q. Zhang, B. Chen, X. Liu, S. Zhang, “Electrodeposition of bright Al coatings from 1-butyl-3-methylimidazolium chloroaluminate ionic liquids with specific additives”, Journal of the Electrochemical Society, 162, 8, (2015), pp.D320-D324.
    37 A.K.N. Reddy, “Preferred orientation in nickel electro-deposits”, Journal of Electroanalytical Chemistry, 6, (1963), pp.141-152.
    38 K. Huber, “Anodic formation of coatings on magnesium, zink and cadium”, Journal of Electroanalytical Chemistry, 100, 8, (1953), pp.376-382.
    39 N.V. Plechkova, K.R. Seddon, “Applications of ionic liquids in the chemical industry”, Chemical Society Reviews, 37, (2008), pp.125-150.
    40 H. Niedermeyer, P.A. Hunt, “Mixtures of ionic liquids”, Chemical Society Reviews, 41, (2012), pp.7780-7802.
    41 K.R. Seddon, A. Stark, M.-J. Torres, “Infiuence of chloride, water, and organic solvents on the physical properties of ionic liquid”, Pure and Applied Chemistry, 72, (2000), pp.2275-2287.
    42 J.H. Davis, Jr., P.A. Fox, “From curiosities tocommodities: ionic liquids begin the transition”, Chemical Commmunications, 11, (2003), pp.1209-1212.
    43 F. Endres, S. Zein EI Abedin, “Air and water stable ionic liquids in physical chemistry”, Physical Chemistry Chemical Physics, 8, (2006), pp.2101-2116.
    44 S.A. Forsyth, J.M. Pringle, D.R. Macfarlane, “Ionic Liquids- an overview”, Australian Journal of Chemistry, 57, (2004), pp.113-119.
    45 J.S. Wikes, J.A. Levisky, C.L. Hussey, “Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis”, Inorganic Chemistry, 21, 3, (1982), pp.1263-1264.
    46 A.a.K. Abdul-Sada, A.M. Greenway, K.R. Seddon, T. Welton, “Upon the existence of Al3Cl10- in room temperature chloroaluminate ionic liquids”, Organic Mass Spectrometry, 24, (1998), pp.917-918.
    47 A.a.K. Abdul-Sada, A.M. Greenway, K.R. Seddon, T. Welton, “A fast atom bombardment mass spectrometric study of room-temperature 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquids. Evidence for the existence of the decachlorotrialuminate(III) anion”, Organic Mass Spectrometry, 28, (1993), pp.759-765.
    48 潘思蓉,“鋁鋅合金於離子液體中在AZ91D鎂合金表面之共鍍反應及其鍍層性質分析研究”,國立成功大學材料科學及工程學系博士論文, (2011)。
    49 S.M. Nakamura, N. Saitou, K. Shimojima, “Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating”, Journal of Materials Science Letters, 19, (2000), pp.473-475.
    50 D. Hawke, K. Gaw, “Effects of chemical surface treatments on the performance of an automotive paint system on die cast magnesium”, SAE Technology paper 920074, Society of Automotive Engineers, Pittsburigh, 1992.
    51 蔡辛甫,“輕金屬產業發展狀況及商機”,工業材料,174,(2011),p.77。
    52 M.M. Avedesian, H. Baker (Eds), “Magnesium and magnesium alloy, ASM Specialty Handbook”, ASM International, Materials Park, OH, USA, (1999), p.194.
    53 R.J. Gale, R.A. Osteryoung, “Infrared spectral investigations of room-temperature aluminum chloride-1-butylpyridinium chloride melts”, Inorganic Chemistry, 19, 8, (1980), pp.2240-2242..

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE