| 研究生: |
王思琳 Wang, Szulin |
|---|---|
| 論文名稱: |
從資訊流建立規劃設計作業程序最佳化之模式 Developing the Optimal Design Process Model Based on Information Flows |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 快速混雜基因演算法 、資訊流 、反覆設計 、設計程序規劃 |
| 外文關鍵詞: | Iterative design, Design process planning, Information flow, fmGA |
| 相關次數: | 點閱:121 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般設計專案之作業項目乃依據專案目標及業主需求進行解析而得,而其工作內容大多是在處理資訊,但由於作業所需之資訊內容具有不確定性,因此設計作業往往需透過反覆資訊傳遞方能得到一合適的設計結果,而反覆設計之範圍可能橫跨多個設計作業項目,形成一個或數個反覆執行迴圈,迴圈中作業項目愈多,愈易導致設計作業的缺失。由於設計作業間之關係大多取決於資訊的流向,因此有必要從資訊流解析作業項目並尋求最佳之設計作業程序。
過去相關研究提出以建立設計作業項目間之相依關係結構矩陣,來處理作業項目間反覆設計之問題,其結果顯示良好的設計作業程序將提升作業項目間資訊傳遞之流暢性,減少猜測資訊所造成的作業錯誤及延宕,因而大幅改善整體設計專案之執行結果。然而,過去在設計作業程序規劃之研究對於資訊流傳遞之可能影響程度考量尚有缺失,使得評估結果易產生偏差,此外,應用相依關係結構矩陣於作業程序規劃輔助時,其建構之矩陣規模乃隨著作業項目的數量之增加而成長,因而在處理複雜專案所衍生的數量龐大的作業項目程序規劃上,亦容易產生規劃時間過長而導致運作效率不佳之問題。
因此本研究針對上述程序規劃準則及規劃效率之問題,發展一套以資訊流傳遞行為為基礎之作業程序評估方法,以確切評量各條資訊流對於設計作業程序所產生的不同程度的影響,並在促進規劃效率方面,應用快速混雜基因演算法之於大型排列組合問題之求解能力,建構為一完整之設計作業程序規劃之最佳化模式,以期有效搜尋專案之各種作業程序組合中,具有最佳資訊流傳遞性的作業程序,從而降低資訊傳遞不佳而導致之作業失敗機率及成本與時間之浪費。
經由案例之測試及驗證結果顯示本研究開發之最佳設計作業程序規劃模式,在結合以資訊流傳遞行為為基礎所建立之作業程序評估方法及快速混雜基因演算法之最佳化工具後,確可規劃出與過去研究規劃結果相同甚或更佳之設計作業程序,並於合理時間內有效尋得最佳解,以提供管理者於處理設計作業程序規劃問題時之參考。
The design project is typically involved with processing a large amount of information from various participants. However, owing to the uncertainty within the information, engineers have to repeatedly perform design activities, such as exchange information with other participants or process information, to produce an appropriate result. This persistent information exchanging process may involve many activities and come into one or several iterative design loops. As there are more activities involving within the iteration loop, the productivity of the design project could fall down easily. Furthermore, because the relationships among the design activities are mainly determined by information flows, the sequence of performing design activities should be properly planned to avoid unnecessary iteration loops. Therefore, it is essential to develop a model that can improve the productivity of the design phase by reducing the unnecessary iterations loops.
Dependency structure matrix (DSM) is one of the widely used methods to describe the design process. By employing DSM, the relationships and the sequence of the design activities can be identified. Many researchers had developed various models to optimize the design process according to DSM. However, the impact of iteration loops within the design process is not thoroughly considered in these studies. In addition, as the number of activities within DSM increases, the optimization process becomes computationally inefficient. Therefore, it is necessary to build a more efficient model which not only thoroughly consider the impact of iteration loops but also find the optimal design process for the large-size design project.
In this research, new principles of evaluating the design process are developed. Furthermore, fast messy genetic algorithm (fmGA) is employed along with the newly developed evaluation principles to build the optimization model of the design process. Results showed that, based on the proposed evaluation principles, the impact of the iteration loops can be clearly identified. In addition, with the proposed optimization model and its computer implementation, engineers can find the optimal design process for the large-scale design project efficiently.
1. Alkayyali, O. J., Mansour, W. O. and Minkarah, I. A. (1993). “How effective is CPM in planning and controlling construction projects?” Proceedings of the CIB W-65 Conference, Trinidad September, 849-859.
2. Altus, S. S., Kroo, I. M., and Gage, P. J.(1996). “A genetic algorithm for scheduling and decomposition of multidisciplinary design Problems.” Journal of Mechanical Design, 118(4), 486-489.
3. Arditi, D., and Lee, D. E. (2002). “Assessing the Corporate Service Quality Performance of Design-build Contractors Using Quality Function Deployment.” Construction Management and Economics, 21, 175-185.
4. Austin, S., Baldwin, A., and Newton, A (1996). “A data flow model to plan and manage the building design process.” Journal of Engineering Design, 7(1), 3-25.
5. Austin, S., Baldwin, A., Li, B., and Waskett, P.(1999). “Analytical Design Planning Technique: a Model of the Detailed Building Design Process.” Design Studies, 20, 279-296.
6. Austin, S., Baldwin, A., Li, B., and Waskett, P.(2000). “Analytical Design Planning Technique(ADePT): a Dependency Structure Matrix tool to Schedule the Building Design Process.” Construction Management and Economics, 18, 173-182.
7. Austin, S., Baldwin, A., Li, B., and Waskett, P.(2000). ”Application of the Analytical Design Planning Technique to Construction Project Management.” Project Management Institute, 31(2), 48-59.
8. Baldwin, A., Austin, S., Thorpe, A. and Hassan, T. (1995). “Simulating quality within the design process.” Proceedings of the American Society of Civil Engineers Second Congress on Computing in Civil Engineering, Atlanta, Georgia, June, 1475-1482.
9. Baldwin, A. N., Austin, S. A., Hassan, T. M., and Thorpe, A (1998). “Planning Building design by Simulating Information Flow.” Automation in Contruction, 8, 149-163.
10. Bloebaum , C. L. (1995). “Coupling Strength-based System Reduction for Complex Engineering Design.” Structural Optimization, 10, 113-121.
11. Browning T. R. (2001). “Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions.” Transactions on Engineering Management, IEEE, 48(3), 292-306.
12. Chen, S. J., and Lin L. (2003). “Decomposition of interdependent task group for concurrent engineering.” Computers and Industrial Engineering, 44, 435-459.
13. Choo, H. J., Hamoond, J., Tommelein, I.D., Austin, S. A., and Ballard, G. (2004). “DePlan: a Tool for Integrated Design Management.” Automation in Construction, 13, 313-326.
14. Chua, D.K.H., Tyagi, A., Ling, S., and Bok, S.H.(2003). “Process-parameter- interface model for design management.” Journal of Construction Engineering and Management, 129(6), 653-663.
15. Deb, Kalyanmoy, and Goldberg, David E. (1991). mGA in C: A Messy Genetic Algorithm in C. Illinois Genetic Algorithms Laboratory, University of Illinois At Urbana-Champaign, Urbana Illinois.
16. Denker, S., and Steward, D. V. (2001). “Planning Concurrency and Managing Iteration in Project.” Project Management , 32(3), 31-38.
17. Dorf , R. C., and Raton, E. B. (1999). “The design structure matrix.” in Technology Management Handbook, FL: Chapman & Hall / CRCnetBASE, 103-111.
18. Eldin, N., and Hikle, V.(2003). “Pilot Study of Quality Function Deployment in Construction Project.” Journal of Construction Engineering and Management, 129(3), 314-329.
19. Eppinger, S. D., Whitney, D. E., Smith, R. P., and Gebala, D. A. (1994). “A model-based method for organization tasks in product development.” Research in Engineering Design, 6(1), 1-13.
20. Gen, M., and Cheng, R. (1997). Genetic algorithms and engineering design., A Wiley-Interscience Publication, New York.
21. Goldberg, D. E. (1989). “Messy genetic algorithms: Motivation, analysis, and first results.” Complex Systems, 3(5), 493-530.
22. Goldberg, D. E., Deb, K. and Clark, J. H. (1992). “Genetic algorithms, noise and the sizing of populations.” Complex Systems, 6, 333-362.
23. Goldberg, D. E., Deb, K., Kargupta, H., and Harik, G.(1993). “Rapid Accurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms.” Proceedings of the Fifth International Conference on Genetic Algorithms, 56-64.
24. Govers, C. P. M.(1996). “What and how about quality function deployment (QFD).” International Journal of Production Economics, 46-47, 575-585.
25. Hauser, J. R., and Clausting D. (1988). The house of quality, Harvard Business Review.
26. Huovila, P., Koskela, L., Lautanala, M. and Tanhuanpaa, V.-P. (1995) “Use of the design structure matrix in construction.” Proceedings of the 3rd International Workshopon Lean Construction, Albuquerque.
27. Knjazew, D.(2003). OmeGA, A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems., Kluwer, MA.
28. Kusiak, A., and Wang , J. (1993). “Efficient organizing of design activities.” Int. J. Prod. Res., 31, 753-769.
29. McCulley , C., and Bloebaum, C. L. (1996). “A Genetic Tool for Optimal Design Sequencing in Complex Engineering Systems.” Structural Optimization, 12, 186-201.
30. Michalewicz, Z.(1996). Genetic Algorithms + Data Structures = Evolution Programs., 3rd Edition. Springer. New York.
31. Newton, A. J. (1995). “The Planning and Management of Detailed Building Design.” PhD Thesis, Loughborough University of Technology, UK.
32. Nicholson, M. P., and Naamani, Z.(1992). “Managing Architectural Design – a Recent Survey.” Construction Management and Economic, 10, 479-487.
33. Rogers, J. L. (1989). “DeMAID- a design manager’s aide for intelligent decomposition user’s guide.” NASA TM 101575.
34. Rogers, J. L., and Padula, S. L. (1989). “An intelligent advisor for the design manager.” NASA TM 101558.
35. Rogers, J. L., and Bloebaum, C. L. (1994). “Ordering Design Tasks Based on Coupling Strengths.” AIAA , 94-4326
36. Rogers, J. L. (1996). “DeMAID/GA user’s guide- Design managers aid for intelligent decomposition with a genetic algorithm.” NASA TM 110241.
37. Rogers, J. L., McCulley, C. M., Bloebaum, C. L. (1996) “Integrating a genetic algorithm into a knowledge-based system for ordering complex design processes.” NASA TM 110247.
38. Sanvido, V. E., and Norton, K. J. (1994). “Integrated design-process model.” Journal of Management in Engineering, September/October, 55-62.
39. Smith, R. P., and Morrow, J. A (1999). “Product Development Process Modeling.” Design Studies, 20, 237-261.
40. Steward, D.V. (1965). “Partitioning and tearing systems of equations.” w SIAM Journal on Numerical Analysis, 2(2), 345-365.
41. Steward, D. V. (1981). Systems analysis and management: Structure, strategy, and design. Princeton, NJ: Petrocelli.
42. Sullivan, W. G., Bontadelli , J. A., and Wicks, E. M.(2000). Engineering Economy., Prentice- Hall, New Jersey.
43. Yang, Y. Q., Wang, S. Q., Dulaimi, M., and Low, S. P. (2003). “A Fuzzy Quality Function Deployment System for Buildable Design Decision-makings.” Automation in Construction, 12, 381-393.
44. 宋欣財,專案排程趕工決策模式,國立成功大學土木工程學系碩士論文,民國92年。
45. 陳惠娟,結合QFD及模糊基因演算法於工程設計之應用,國立成功大學土木工程學系碩士論文,民國93年。
46. 中綱科技,http://www.axon.com.tw/。