| 研究生: |
陳君瑋 Chen, Chun-Wei |
|---|---|
| 論文名稱: |
多孔性極板滲流特性之數值研究 Numerical Study of Seepage Flow Through a Porous Electrode |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 熱流分析軟體FloWorks 、質子交換膜燃料電池 |
| 外文關鍵詞: | PEMFC |
| 相關次數: | 點閱:70 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著環保意識提昇以及為未來極可能發生的能源危機作準備,低污染能源之開發已成為當今能源科技至為迫切的研究目標;而燃料電池為其中最有發展潛力的一個方向。在各式燃料電池之中,又以質子交換膜燃料電池最受重視;因為質子交換膜燃料電池具有可以在室溫下運作、可利用空氣當氧化劑、發電功率大、發動快、污染極低等優點,然而,質子交換膜燃料電池技術仍有許多開發與改進的空間,而其中如何讓質子交換膜燃料電池更輕、更有效率已成為目前能源科技研究重點之一。
本文利用熱流分析軟體FloWorks模擬質子交換膜燃料電池中多孔性極板之氣體滲流特性,並探討相關系統參數(如入口流量、多孔係數、流道間距與多孔性材料厚度等)對於多孔性極板內氣體擴散行為的影響。在文中我們整理數值模擬結果,並探討各系統參數對多孔性極板氣體滲透的交叉影響。我們相信本文所獲得的結論可作為設計燃料電池多孔性極板時的參考依據。
Due to growing environmental protection concerns and limited oil reserves on earth, development of new energy technologies exploiting alternative low-pollution fuels has become an imperious research objective. In such guest, fuel cells are now considered to be a promising solution. Meanwhile, among various types of existing fuel cells, the proton exchange membrane fuel cells (PEMFCs) have received most of the attention, because they can be efficiently operated at relatively low temperatures, use air as the oxidant, produce large power, start fast, and are essentially pollution free. Even so, much work remains to be done to improve the PEMFC technology.
In this thesis, we use the commercial software FloWorks™ to simulate the seepage flow through a porous electrode of a PEMFC. In particular, the effects of various system parameters on the overall seepage characteristics are evaluated. The system parameters considered here include the thickness of the porous backing layer, the spacing of gas flow passages on the flow field/current collector, and the operating pressure. Results of numerical simulations are systematically summarized, and the conclusions are expected to be useful for designing realistic fuel cells.
[1] E. Hontanon, M. J. Escudero, C. Bautista, P. L. Garcia-Ybarra, L. Daza,“Opimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques”, Journal of Power Sources 86(2000) 363-368.
[2] T. Berning, D.M. Lu, N. Djilali,“Three-dimensional computational analysis of transport phenomena in a PEM fuel cell”, Journal of Power Sources 106(2002) 284-294.
[3] S. Miachon, P. Aldebert,“Internal hydration H2/O2 100 cm2 polymer electrolyte membrane fuel cell”, J.Power Sources 56(1995) 31-36.
[4] P. Gode, G. Lindbergh,G. Sundholm,“In-situ measurements of gas permeability in fuel cell membranes using a cylindrical microelectrode”, J. Electroanalytical Chemistry 518(2002) 115-122.
[5] R. Strobel, M. Oszcipok, M. Fasil, B. Rohland, L. Jorissen, J. Garche, “The compression of hydrogen in an electrochemical cell based on a PE fuel cell design”, Journal of Power Sources 105(2002) 208-215.
[6] J.J. Baschuk, X. Li,“Modelling of polymer electrolyte membrane fuel cell with variable degree of water flooding”, Journal of Power Sources 86(2000) 181-196.
[7] D. Staschewski,“Internal humidifying of PEM fuel cells”, Int. J. Hydrogen Energy Vol.21, No. 5, pp.381-385, 1996.
[8] T. Okada, G. Xie,M. Meeg,“Simulation for water management in membranes for polymer electrolyte fuel cells”, electrochimica Acta, Vol. 43, Nos. 14-15, pp. 2141-2155, 1998.
[9] M. Noponen, T. Mennola, M. Mikkola, T. Hottinen, P. Lund,“Measurement of current distribution in a free-breathing PEMFC”, J. Power Sources 106(2002) 304-312.
[10] N. Rajalakshmi, P. Sridhar, K. S. Dhathathreyan,“Identification and characterization of parameters for exernal humidification used in polymer electrolyte membrane fuel cells”, J.Power Sources 109(2002) 452-457.
[11] S.-J. Shin, J.-K. Lee, H.-Y. Ha, S.-A. Hong, H.-S. Chun, I.-H. Oh, “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells”, Journal of Power Sources 106(2002) 146-152.
[12] M. Cassir, C. Belhomme,“ Technological applications of molten salts:the case of the molten carbonate fuel cell”, Plasmas and lons (1999) 1,3-15.
[13] K. Scott, W. M. Taama, P. Argyropoulos,“Performance of the direct methanol fuel cell with radiation-grafted polymer membranes”, Journal of Membrane Science 171(2000) 119-130.
[14] J. Wind, R. Spah, W. Kaiser, G. Bohm,“Metallic bipolar plates for PEM fuel cells”, Journal of Power Sources 105(2002) 256-260.
[15] A. H. H. Janssen, F. A.de Bruijn, R. K.A.M. Mallant,“Use of stainless steel for cost competitive bipolar plates in the SPFC”, Journal of Power Sources 86(2000) 274-282.
[16] P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, J. Moore,“New materials for polymer electrolyte membrane fuel cell current collectors”, Journal of Power Sources 80(1999) 235-241.
[17] T. Okada,“Theory for water management in membranes for
polymer electrolyte fuel cells. Part1 The effect of impurity ions at the anode side on the membrane performances”, Journal of Electroanalytical Chemistry 465(1999) 1-17.
[18] T. Okada,“Theory for water management in membranes for
polymer electrolyte fuel cells .Part1 The effect of impurity ions at the cathode side on the membrane performances”, Journal of Electroanalytical Chemistry 465(1999) 18-29.
[19] R. F. Mann, J. C. Amphlett, M. A. I. Hoopeer, H. M. Jensen, B. A. Peppley, P. R. Roberge,“Development and application of a generalised steady-state electrochemical model for PEM fuel cell”, Journal of Power Sources 86(2000) 173-180.
[20] K. Vafai,“Handbook of Porous Media”, p444-453, Marcel Dekker.
[21] K. Ishizaki, S. Komarneni, M. Nanko,“Porous Materials Process technology and application”, p188, Kluwer academic publishers.