| 研究生: |
李哲維 Li, Che-Wei |
|---|---|
| 論文名稱: |
雙邊貼有壓電材料樑之機電效應研究與充電設計 Study of the Electromechanical Effect and Design of Charging Circuit on Timoshenko Beam with Double-Sided Surface Mounted Piezoelectric Material |
| 指導教授: |
王榮泰
Wang, Rong-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 壓電樑 、有限元素法 、能量擷取器 |
| 外文關鍵詞: | Piezoelectric Timoshenko beam, Finite element method, Energy charging circuit |
| 相關次數: | 點閱:120 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電材料的應用在生活上越來越廣泛,為了能使能量被有效的儲存,發展出許多方法讓能量的收集更有效率,以及減少能量在運送過程的耗損,如今仍然有許多研究在為如何有效的收集能量在努力與探討電路的改良。
本文為探討一個Timoshenko懸臂樑之上下面貼有壓電片之模型,以有限元素法於分析這個壓電懸臂樑之動態行為,再利用Newmark法計算出壓電樑在受外力作用後所產生之電壓與行為。另設計一組能量擷取電路,將壓電片產生之電能有效的儲存。
壓電片受外力作用後,會產生相應之電荷,但因產生的能量以交流電型態出現,無法直接儲存或供電器使用,故本文設計一組充電電路,將產生的交流電經由增倍壓、整流、濾波、穩壓步驟後並儲存,並探討在不同的外力下,改變電容與電阻對整個電路之輸出影響。
Nowadays, the piezoelectric material is widely applied to our everyday life. Scientists invent many efficient methods of collecting energy to make energy be stored and reduce the waste of energy. Recently, there are many researches about how to improve electrical circuits of storing energy and make it more effective.
We are probing a model of charging circuit on Timoshenko beam with double-sided surface mounted piezoelectric material, and analyze its dynamic behavior by finite element method. Then we use Newmark’s method to calculate the voltage and observe the behavior caused by the external force. After that, we design another charging circuit to store the energy from piezoelectric material efficiently.
After the external force affect the piezoelectric material, there are corresponding electrons created. Due to the energy appeared in the form of alternating current, which can’t be stored directly or be applied to devices, so that a charging circuit is been designed and let the alternating current can be stored via voltage doubler, rectifier, voltage filter and voltage stabilizer. Then the effect on whole circuit by changing resistances and capacitances and with different external forces is observed and discussed.
1. D. H. Robbins and J. N. Reddy, “Analysis of Piezoelectricity Actuated Beams Using a Layer-wise Displacement Theory,” Computers and Structures, Vol. 41, No. 2, pp. 265-279, 1991.
2. J. G. Smits, and W. S. Choi, “The Constituent Equations of Piezoelectric Heterogeneous Bimorphs,” Ultrasonic, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 38, No. 3, pp. 256-270, 1991.
3. Y. J. Lee, “Finite Element Approach of Vibration Control Using Self-Sensing Piezoelectric Actuators,” Computers and Structures, Vol.60, No.3, pp. 505-512, 1996.
4. S. Brooks and P. Heyliger, “Static Behavior of Piezoelectric Laminates with Distributed and Patched Actuators,” Journal of intelligent Material Systems and Structures, Vol. 5, pp. 635-646, 1994.
5. C. Q. Chen, X. M. Wang and Y. P. Shen, “Finite Element Approach of Vibration Control Using Self-sensing Piezoelectric Actuators,” Computers and Structures, Vol. 60, No. 3, pp. 502-512, 1996.
6. X. D. Zhang and C. T. Sun, “Formulation of an Adaptive Sandwich Beam,” Smart Materials and Structures, Vol. 5, No. 6, pp. 814-823, 1996.
7. S. K. Ha, C. Keilers, and F. K. Chang, “Finite Element Analysis of Composite Structures Containing Distributed Piezoelectric Sensors and Actuators.” AIAA Journal, Vol. 30, pp. 772-780, 1992.
8. H. S. Tzou, and G. C. Wang, “Distributed Structural Dynamics Control of Flexible Manipulators-I. Structural Dynamics and Viscoelastic Actuator,” Computers and Structures, Vol. 35, pp. 669-677, 1990.
9. E. F. Crawley, and J. de. Luis, "Use of Piezoelectric Actuators as Elements of Intelligent Structures,” AIAA Journal, Vol. 25, No. 10, pp. 1375-1385, 1987.
10. H. Abramovich, and A. Livshits, “Dynamic Behavior of Cross-ply Laminated Beams with Piezoelectric Layers,” Computer Structures, Vol. 25, pp. 371-379, 1993.
11. H. S. Tzou, and C. I. Tseng, “Distributed Vibration Control and Identification of Coupled Elastic/Piezoelectric System: Finite Element Formulation and Application,” Mechanical Systems and Signal Processing, Vol. 5, No. 3, pp. 215-231, 1991.
12. .I. Y. Shen, “A Variational Formulation, a Work-energy Relation and Damping Mechanisms of Active Constrained Layer Treatments,” Journal of Vibration and Acoustics, Vol. 199, No. 2, pp. 192-199, 1997.
13. Y. H. Lim, “Finite-Element Simulation of Closed Loop Vibration Control of a Smart Plate under Transient Loading,” Smart Material and Structures, pp. 272-286, 2003.
14. Angela Triplett and D. Dane Quinn, “The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting.” Journal of Intelligent Material Systems and Structures, Vol. 20, No. 16, pp. 1959-1967, 2009.
15. Q. Wang, and S. T. Quek, “A Model for the Analysis of Beams with Embedded Piezoelectric Layer,” Journal of Intelligent Material System and Structures, Vol. 13, pp. 61-70, 2002.
16. R. L. Goldberg, M. J. Jurgens, D. M. Mills, C. S. Henriquez, D. Vaughan, S. W. Smith, “Modeling of Piezoelectric Multilayer Ceramics Using Finite Element Analysis”, IEEE Trans on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 44, pp. 1204-1214, 1997.
17. H. A. Sodano, D. J. Inman and G. Park, “A Review of Power Harvesting from Vibration Using Piezoelectric Materials,” The Shock and Vibration Digest, Vol. 36, No. 3, pp. 197-205, May. 2004.
18. 戴毓城,“Study of the Coupling Effects of Force and Voltage on Timoshenko Beam with Surface Mounted Piezoelectric Material,” 國立成功大學碩士論文,民國103.
19. 陳瑞堂, “Charging Device analysis on Timoshenko Beam with One Side Surface Mounted Piezoelectric Material,” 國立成功大學碩士論文,民國104.
20. http://elect.taivs.tp.edu.tw/course/ch03_w4.htm
21. http://www.shs.edu.tw/works/essay/2008/10/2008102322334138.pdf
22. https://market.cloud.edu.tw/content/vocation/electronic/tp_ss/unit6/u6-1-4.htm
23. http://pub.tust.edu.tw/mechanic/mclab/public_html/_private/electronics/bjt/concept.htm
24. http://www2.nsysu.edu.tw/MMSL/講義.pdf