簡易檢索 / 詳目顯示

研究生: 古峻威
Ku, Ghun-Wei
論文名稱: 射極突出部厚度對異質接面雙極性電晶體元件特性與熱穩定度之影響之研究
Study of Influences of Emitter Ledge Thickness on Device Properties and Thermal Stability of Heterojunction Bipolar Transistors (HBTs)
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 100
中文關鍵詞: 異質接面雙極性電晶體
外文關鍵詞: Heterojunction Bipolar Transistors (HBTs)
相關次數: 點閱:58下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於III-V族材料系統極佳之高速表現及高電子移動率特性,使得砷化鎵與磷化銦系列異質接面雙極性電晶體在積體電路應用上極具發展潛力,然而,對砷化鎵系列異質接面雙極性電晶體而言,將會有大量的電子與電洞復合於射極側壁與基極金屬電極層間之裸露基極表面,造成一顯著之表面復合電流與射極尺寸效應。因此,為了提升元件在數位及微波電路上之應用,消除射極尺寸效應已成為各學術單位重要研究課題。在本論文中,我們利用低壓有機金屬化學汽相沉積法成長及研製磷化銦鎵/砷化鎵材料系列之異質接面雙極性電晶體。討論不同溫度環境下,射極突出部厚度對磷化銦鎵/砷化鎵異質接面雙極性電晶體特性之影響。由於表面通道仍存在於射極突出部與基極金屬電極層間之裸露基極層區域之表面,而且,不適當的突出部厚度將造成嚴重的表面復合現象於突出部側壁與基極金屬電極層介面間。所以適當之突出部厚度對於抑制表面復合現象是一個值得探討的問題。從實驗結果發現,磷化銦鎵/砷化鎵異質接面雙極性電晶體之最佳射極突出部厚度介於100-200 Å之間。當突出部厚度介於100-200 Å之間,元件具有最好的電晶體特性、最小的基極電流、最大的電流增益、最好的熱穩定性與可靠度。

    It is well known that the high electron mobilities and velocities in III-V compound semiconductor materials make GaAs- or InP-based heterojunction bipolar transistors (HBTs) be attractive for high-speed IC applications. However, for a typical GaAs-based HBT, a lateral diffusion of injected carriers at the exposed base surface between the emitter mesa sidewall and the base Ohmic contact leads to the considerable recombinations between electrons and holes. In addition, a capture of electrons and holes by surface traps results in the undesired dependences of current gain on the emitter size. For the practical high speed digital and microwave applications, the elimination of the emitter size effect is a crucial issue. In this thesis, the temperature-dependent characteristics of InGaP/GaAs HBTs with different emitter-ledge thickness are systematically investigated. The undesired surface channel phenomenon at the exposed base surface between the base contact and emitter ledge is comprehensively analyzed. Moreover, improper thickness of emitter-ledge passivations would cause serious surface recombination at the edge of emitter ledge. Therefore, the thickness of emitter ledge is a critical issue and should be carefully considered. From experimental results, the devices with emitter ledge thickness between 100 and 200 Å reveal the best device characteristics, the lowest base current, the highest DC current gain, and the best thermal stability and reliability. Therefore, the optimum emitter ledge thickness of InGaP/GaAs HBTs is between 100 and 200 Å.

    Abstract (Chinese) Abstract (English) Table Captions Figure Captions Chapter 1. Introduction...........................1 Chapter 2. InGaP/GaAs Heterojunction Bipolar Transistors (HBTS) with Different Emitter Ledge Thickness 2-1. Introduction....................................6 2-2. Device structure and fabrication process........7 2-3. The mechanism of emitter ledge passivation......9 2-4. Experimental results and discussion............11 2-5. Conclusion.....................................15 Chapter 3. Influences of Emitter Ledge Thickness on the Temperature-Dependent Characteristics of Heterojunction Bipolar Transistors (HBTs) 3-1. Introduction...................................16 3-2. Device structure and fabrication process.......17 3-3. Experimental results and discussion............19 3-4. Conclusion.....................................27 Chapter 4. Conclusion and Prospect 4-1. Conclusion.....................................29 4-2. Prospect.......................................30 References..............................................33 Tables Figures

    [1] W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),” IEEE Trans. Electron Devices, vol. 44, pp. 346-348, 1997.
    [2] D. F. Guo, “Characteristics of a triple-well heterostructure-emitter bipolar transistor (TWHEBT),” Solid State Electron., vol. 41, pp. 501-506, 1997.
    [3] J. H. Tsai, “Application of AlGaAs/GaAs/InGaAs heterostructure emitter for resonant tunneling transistor,” Appl. Phys. Lett., vol. 75, pp. 2668-2670, 1999.
    [4] S. Y. Cheng, W. C. Wang, W. L. Chang, J. Y. Chen, H. J. Pan, and W. C. Liu, “A new InGaP GaAs double delta-doped heterojunction bipolar transistor ((DHBT)-H-3),” Thin Solid Films, vol. 345, pp. 270-272, 1999.
    [5] L. S. McCarthy, P. Kozodoy, M. J. W. Roweell, S. P. DenBaars, and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, pp. 277-279, 1999.
    [6] P. C. Chang, A. G. Baca, N. Y. Li, P. R. Sharps, H. Q. Hou, J. R. Laroche and Ren, “InGaAsN/AlGaAs P-n-p heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 76, pp. 2788-2790, 2000.
    [7] M. Ida, K. Kurishima, and N. Watanabe, “Over 300 GHz fT and fmax InP/InGaAs double heterojunction bipolar transistors with a thin pseudomorphic base,” IEEE Electron Device Lett., vol. 23, pp. 694-696, 2002.
    [8] Y. M. Kim, M. Urteaga, M. J. W. Rodwell, and A. C.Gossard, “High speed, low leakage current InP/In0.53Ga0.47As/InP metamorphic double heterojunction bipolar transistors,” Electron. Lett., vol. 38, pp. 1288-1289, 2002.
    [9] J. Y. Chen, D. F. Guo, S. Y. Cheng, K. M. Lee, C. Y. Chen, H. M. Chuang, S. Y. Fu, and W. C. Liu, “A new InP/InGaAs heterojunction bipolar transistor (HBT) with a superlattice-collector structure,” IEEE Electron Device Lett., vol. 25, pp. 244-246, 2004.
    [10] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee, and W. C. Liu, “Comprehensive study of InGaP/ AlXGa1-XAs /GaAs heterojunction bipolar transistors (HBTs) with different doping concentrations of AlXGa1-XAs graded layers,” Semicond. Sci. Technol., vol. 19, pp.351-358, 2004.
    [11] P. C. Chao, P. M. Smith, K. H. G. Duh, and J. C. M. Hwang, “60-GHz GaAs low-noise MESFETs by molecular-beam epitaxy,” IEEE Trans. Electron Devices, vol. 33, pp. 1852-1857, 1986.
    [12] K. Eisenbeiser, R. Droopad, and J. H. Huang, “Metamorphic InAlAs/InGaAs enhancement mode HEMTs on GaAs substrates,” IEEE Electron Device Lett., vol. 20, pp. 507-509, 1999.
    [13] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative study on DC characteristics of In0.49Ga0.51P-channel heterostructure field-effect transistors with different gate metals,” Semicond. Sci. Technol., vol. 18, pp. 319-324, 2003.
    [14] Y. J. Li, W. C. Hsu, I. L. Chen, C. S. Lee, Y. J. Chen, and K. Lo, “Improved characteristics of metamorphic InAlAs/InGaAs high electron mobility transistor with symmetric graded InXGa1-XAs channel,” J. Vac. Sci. Technol. B, vol. 22, pp.2429-2433, 2004.
    [15] E. Y. Chang, Y. C. Lin, G. J. Chen, H. M. Lee, G. W. Huang, D. Biswas, and C. Y. Chang, “Composite-channel metamorphic high electron mobility transistor for low-noise and high-linearity applications,” Jpn. J. Appl. Phys., Part 2, vol. 43, pp. L871-L872, 2004.
    [16] K. B. Chough, B. W. P. Hong, C. Caneau, J. I. Song, K. I. Jeon, S. C. Hong, and K. Lee, “Graded pseudomorphic channel AlInP/AlInAs/GaInAs HEMTs with high channel breakdown voltage,” Electronics Letters, vol. 30, pp. 453-454, 1994.
    [17] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, pp. 274-276, 1999.
    [18] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
    [19] Y. S. Lin, W. C. Hsu, C. H. Wu, W. Lin, and R. T. Hsu, “High breakdown voltage symmetric double -doped In0.49Ga0.51P/In0.25Ga0.75As/GaAs high electron mobility transistor,” Appl. Phys. Lett., vol. 75, pp. 1616-1618, 1999.
    [20] K. H. Yu, H. M. Chuang, K. W. Lin, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP/InGaAs/GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
    [21] C. Gaquiere, J. Grunenputt, D. Jambon, E. Delos, D. Ducatteau, and M. Werquin, “A high-power W-band pseudomorphic InGaAs channel PHEMT,” IEEE Electron Device Lett., vol. 26, pp. 533-534, 2005.
    [22] P. H. Lai, C. W. Chen, C. I. Kao, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Influences of sulfur passivation on temperature-dependent characteristics of an AlGaAs/InGaAs/GaAs PHEMT,” IEEE Trans. Electron Devices, vol. 53, pp. 1-8, 2006.
    [23] W. C. Hsu, D. H. Huang, Y. S. Lin, Y. J. Chen, J. C. Huang, and C. L. Wu, “Characteristics performance improvement in tensile-strained In0.5Al0.5As/InXGa1-XAs/In0.5Al0.5As metamorphic HEMT,” IEEE Trans. Electron Devices, vol. 53, pp. 406-412, 2006.
    [24] K. H. Su, W. C. Hsu, C. S. Lee, T. Y. Wu, Y. H. Wu, L. Chang, R. S. Hsiao, J. F. Chen, and T. W. Chi, “A novel dilute antimony channel In0.2Ga0.8AsSb/GaAs HEMT,” IEEE Electron Device Lett., vol. 28, pp. 96-99, 2007.
    [25] G. M. Loubriel, W. D. Helgeson, D. L. McLaughlin, M. W. O'Malley, F. J. Zutavern, A. Rosen, and P. J. Stabile, “Triggering GaAs lock-on switches with laser diode arrays,” IEEE Trans. Electron Devices, vol. 38, pp. 692-695, 1991.
    [26] S. Kakimoto, K. Shigihara, and Y. Nagai, “Laser diodes in photon number squeezed state,” IEEE J. Quantum Electron., vol. 33, pp. 824-830, 1997.
    [27] C. M. Lee, C. C. Chuo, J. F. Dai, X. F. Zheng, and J. I. Chyi, “Temperature dependence of the radiative recombination zone in GaN/InGaN multiple quantum well light emitting diodes,” J. Appl. Phys., vol. 89, pp. 6554-6556, 2001.
    [28] P. H. Lei, C. C. Lin, W. J. Ho, M. C. Wu, and L. W. Laih, “1.3-μm n-type modulation-doped AlGaInAs/AlGaInAs strain-compensated multiple quantum well laser diodes,” IEEE Trans. Electron Devices, vol. 49, pp. 1129-1135, 2002.
    [29] I. L. Chen, W. C. Hsu, H. C. Kuo, C. P. Sung, C. H. Chiou, J. M. Wang, Y. H. Chang, H. C. Yu, and T. D. Lee, “Effect of annealing on low-threshold-current large-wavelength InGaAs quantum well vertical-cavity laser,” Jpn. J. Appl. Phys., vol. 45, pp. 770-773, 2006.
    [30] H. C. Wei, Y. H. Wang, and M. P. Houng, “N-shaped negative differential resistance in a transistor structure with a resistive gate,” IEEE Trans. Electron Devices, vol. 41, pp. 1327-1333, 1994.
    [31] W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, S. Y. Cheng, K. B. Thei, and C. Z. Wu, “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 44, pp. 520-525, 1997.
    [32] K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, and T. J. Chen, “Novel SiC/Si heterostructure negative-differential-resistance diode for use as switch with high on/off current ratio and low power dissipation,” IEEE Electron Device Lett., vol. 19, pp. 294-296, 1998.
    [33] D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A double-barrier-emitter triangular-barrier optoelectronic switch,” IEEE J. Quantum Electron., vol. 40, pp. 413-419., 2004.
    [34] D. F. Guo, C. H. Yen, J. H. Tsai, W. S. Lour, and W. C. Liu, “Characteristics improvement for an n-p-n heterostructure optoelectronic switch by introducing a wide-gap layer in the collector,” J. Electrochem. Soc., vol. 154, pp. H13-H15, 2007.
    [35] H. Kroemer, “Theory of wide-gap emitter for transistors,” Proc. IRE, vol. 45, pp. 1535-1536, 1957.
    [36] S. Y. Cheng, “Comprehensive study of an InGaP/AlGaAs/GaAs heterojunction bipolar transistor (HBT) with a continuous conduction-band structure,” Semicond. Sci. Technol., vol. 17, 701-707, 2002.
    [37] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, Y. J. Chen, and L. S. Lin, “Investigation of InGaP/GaAs heterojunction bipolar transistor with doping graded base,” J. Vac. Sci.Technol. B, vol. 21, 2555-2557, 2003.
    [38] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee and W. C. Liu, “Comprehensive study of InGaP/AlXGa1-XAs/GaAs heterojunction bipolar transistors with different doping concentrations of AlXGa1-XAs graded layers,” Semicond. Sci. Technol., vol. 19, 351-358, 2004.
    [39] M. J. Mondry and H. Kroemer, “Heterojunction bipolar transistor using a (Ga,In)P emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. 6, pp. 175-177, 1985.
    [40] S. S. Lu and C. C. Huang, “High-current-gain Ga0.51In0.49P/GaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 13, pp. 214-216, 1992.
    [41] W. Liu, E. Beam, T. Henderson, and S. K. Fan, “Extrinsic base surface passivation in GaInP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 14, pp. 301-303, 1993.
    [42] C. E. Huang, C. P. Lee, H. C. Liang, and R. T. Huang, “Critical spacing between emitter and base in InGaP heterojunction bipolar transistors (HBTs),” IEEE Electron Device Lett., vol. 23, pp. 576-578, 2002.
    [43] W. Liu, “Ideality factor of extrinsic base surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors,” Electron. Lett., vol. 28, pp. 379-380, 1992.
    [44] W. Liu, D. Costa, and J. S. Harris, Jr., “Current gain of graded AlGaAs/GaAs heterojunction bipolar transistors with and without a base quasi-electric field,” IEEE Trans. Electron Devices, vol. 39, pp. 2422-2429, 1992.
    [45] W. Liu and J. S. Harris, Jr., “Effects of emitter-base contact spacing on the current gain in heterojunction bipolar transistors,” Jpn. J. Appl. Phys., vol. 31, pp. 2349-2351, 1992.
    [46] W. Liu and J. S. Harris, Jr., “Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2726-2732, 1992.
    [47] B. J. Skromme, C. J. Sandroff, E. Yablonovitch, and T. Gmitter, “Effects of passivating ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987.
    [48] S. Tiwari, D. J. Frank, and S. L. Wright, “Surface recombination in GaAlAs/GaAs heterostructure bipolar transistors”, J. Appl. Phys., vol. 64, pp. 5009-5012, 1988.
    [49] C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison, “Electronic passivation of GaAs surfaces through the formation of arsenic-sulfur bonds,” Appl. Phys. Lett., vol. 54, pp. 362-364, 1989.
    [50] Y. T. Oh, S. C. Byun, B. R. Lee, T. W. Kang, C. Y. Hong, S. B. Park, H. K. Lee, and T.W. Kim, “Diminution of the surface states on GaAs by a sulfur treatment,” J. Appl. Phys., vol. 76, pp.1959-1961, 1994.
    [51] R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, and S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., vol. 73, pp. 665-667, 1998.
    [52] S. Tiwari and D. J. Frank, “Analysis of the operation of GaAlAs/GaAs HBT’s,” IEEE Trans. Electron Devices, vol. 36, pp. 2105-2121, 1989.
    [53] M. T. Fresina, Q. J. Hartmann, and G. E. Stillman, “Selective self-aligned emitter ledge formation for heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 17, pp. 555-556, 1996.
    [54] Y. S. Lin, Y. H. Wu, J. S. Su, W. C. Hsu, S. D. Ho, and W. Lin, “An improved In0.5Ga0.5P/GaAs double heterostructure-emitter bipolar transistor using emitter edge-thinning technique,” Jpn. J. Appl. Phys. vol. 36, pp. 2007-2009, 1997.
    [55] W. S. Lour and J. L. Hsieh, “Effects of passivation-layer thickness and current gain enhancement of InGaP/GaAs -doped single heterojunction bipolar transistors using an InGaP passivation layer,” Semicond. Sci. Technol., vol. 13, pp. 847-851, 1998.
    [56] T. Henderson, “Modeling gallium arsenide heterojunction bipolar transistor ledge variations for insight into device reliability,” Microelectron. Reliab., vol. 42, pp. 1011-1020, 2002.
    [57] C. Y. Chen, S. I Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, C. H. Yen, S. F. Tsai, R.C. Liu, and W. C. Liu, “Influences of surface sulfur treatments on the temperature-dependent characteristics of heterojunction bipolar transistors (HBTs),” IEEE Trans. Electron Devices, vol. 51, pp. 1963-1971, 2004.
    [58] S. W. Tan, H. R. Chen, M. Y. Chu, W. T. Chen, A. H. Lin, M. K. Hsu, T. S. Lin, and W. S. Lour, “Comparisons between InGaP/GaAs heterojunction bipolar transistors with a sulfur- and an InGaP- passivated base surface,” Superlattices & Microstructures, vol. 37, pp. 401-409, 2005.
    [59] N. Hayama and K. Honjo, “Emitter size effect on current gain in fully self-aligned AlGaAs/GaAs HBT’s with AlGaAs surface passivation layer,” IEEE Electron Device Lett., vol. 11, pp. 388-390, 1990.
    [60] T. J. deLyon, H. C. Casey, Jr., P. M. Enquist, J. A. Hutchby, and A. J. SpringThorpe, “Surface recombination current and emitter compositional grading in npn and pnp GaAs/AlXGa1-XAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 54, pp. 641-643, 1989.
    [61] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994.
    [62] Z. Jin, S. Neumann, W. Prost, and F. J. Tegude, “Surface recombination mechanism in graded-base InGaAs–InP HBTs,” IEEE Trans. Electron Devices, vol. 51, pp. 1044-1045, 2004.
    [63] N. G. M. Tao, H. Liu, and C. R. Bolognesi, “Surface recombination currents in “Type-II” npn InP–GaAsSb–InP self-aligned DHBTs,” IEEE Trans. Electron Devices, vol. 52, pp. 1061-1066, 2005.
    [64] O. Nakajima, K. Nagata, H. Ito, T. Ishibashi, and T. Sugeta, “Emitter-base junction size effect on current gain Hfe of AlGaAs/GaAs heterojunction bipolar transistors,” Jpn. J. Appl. Phys., vol. 24, pp. L596-L598, 1985.
    [65] S. N. Mohammad, J. Chen, J. I. Chyi, and H. Morkoç, “Suppression of emitter size effect on the current-voltage characteristics of AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 56, pp. 937-939, 1990.
    [66] W. Liu, D. Costa, and J. S. Harris, Jr, “Theoretical comparison of base bulk recombination current and surface recombination current of a mesa AlGaAs/GaAs heterojunction bipolar transistor,” Solid State Electron., vol. 34, pp. 1119-1123, 1991.
    [67] H. H. Lin and S. C. Lee, “Super-gain AlGaAs/GaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design,” Appl. Phys. Lett. vol. 47, pp. 839, 1985.
    [68] Y. S. Hiraoka and J. Yoshida, “Two-dimensional analysis of the surface recombination effect on current gain for GaAlAs/GaAs HBT’s,” IEEE Trans. Electron Devices, vol. 35, pp. 857-862, 1988.
    [69] C. S. Kyono, S. C. Binari, and K. Ikossi-Anastasiou, “Gain enhancement in InAlAs/InGaAs heterojunction bipolar transistors using an emitter ledge,” J. Appl. Phys., vol. 76, pp. 1954-1955, 1994.
    [70] D. Costa, M. N. Tutt, A. Khatibzadeh, and D. Pavlidis, “Tradeoff between 1/f noise and microwave performance in AlGaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 1347-1350, 1994.
    [71] M. T. Fresina, PH.D.thesis, University of Illionis, 1996.
    [72] W. C. Liu, C. H. Lin, C. Y. Sun, and W. S. Lour, ”S-shaped negative differential resistance in a single GaAs quantum-well switching device,” Jpn. J. Appl. Phys., vol. 29, no. 8, pp. L1385-1387, 1990.
    [73] H. R. Chen, C. Y. Chang, C. P. Lee, C. H. Huang, J. S. Tsang, and K. L. Tsai, “High current gain, low offset voltage heterostructure emitter bipolar transistors,” IEEE Electron Device Lett., vol. 15, pp. 336-338, 1994.
    [74] M. M. Jahan and A. F. M. Anwar, “Junction temperature dependence of high-frequency noise in heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 16, pp. 551-553, 1995.
    [75] Y. S. Lin, D. H. Huang, W. C. Hsu, K. H. Su, and T. B. Wang, “Enhancing the current gain in InP/InGaAs double heterojunction bipolar transistors using emitter edge thinning,” Semicond. Sci. Technol., vol. 21, pp. 303-305, 2006.
    [76] S. W. Tan, H. R. Chen, W. T. Chen, M. Y. Chu, and W. S. Lour, “Sulfur-and InGaP-Passivated Heterojunction Bipolar Transistors,” Junction Technology, IWJT, pp. 228-231, 2004.
    [77] H. H. Lin and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design,” Appl. Phys. Lett., vol. 47, pp. 839-841, 1985.
    [78] J. R. Waldrop, K. C. Wang, and P. M. Asbeck, “Determination of junction temperature in AlGaAs/GaAs heterojunction bipolar transistors by electrical measurement,” IEEE Trans. Electron Devices, vol. 39, pp. 1248-1250, 1992.
    [79] D. E. Dawson, A. K. Gupta, and M. L. Salib, “CW measurement of HBT thermal resistance,” IEEE Trans. Electron Devices, vol. 39, pp. 2235-2239, 1992.
    [80] B. Yeats, “Inclusion of topside metal heat spreading in the determination of HBT temperatures by electrical and geometrical methods,” IEEE GaAs IC Symposium, pp. 59-62, 1999.
    [81] M. G. Adlerstein and J. M. Gering, “Current induced degradation in GaAs HBT’s,” IEEE Trans. Electron Devices, vol. 47, pp. 434-439, 2000.
    [82] C. K. Song and P. J. Choi, “Effects of InGaP heteropassivation on reliability of GaAs HBT’s,” Microelectronics Reliability, vol. 39, pp. 1817-1822, 1999.
    [83] H. K. Yow, P. A. Houston, C. M. Sidney Ng, C. Button, and J. S. Roberts, “High-temperature DC characteristics of AlXGa0.52-XIn0.48P/GaAs heterojunction bipolar transistors grown by metal organic vapor phase epitaxy,” IEEE Trans. Electron Devices, vol. 43, pp. 2-7, 1996.
    [84] K. Ikossi-Anastasiou, A Ezis, K. R. Evans, and C. E. Stutz, “Low-temperature characterization of high-current-gain graded-emitter AlGaAs/GaAs narrow-base heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 13, pp.414-417, 1992.
    [85] T. Takahashi, S. Sasa, A. Kawano, T. Iwai, and T. Fujii, “High-reliability InGaP/GaAs HBTs fabricated by self-aligned process,” Electron Devices Meeting, 1994. Technical Digest., International, pp. 191-194, 1994.
    [86] N. Pan, J. Elliott, M. Knowles, D. P. Vu, K. Kishimoto, J. K. Twynam, H. Sato, M. T. Fresina, and G. E. Stillman, “High reliability InGaP/GaAs HBT,” IEEE Electron Device Lett., vol. 19, pp. 115-117, 1998.
    [87] O. Ueda, A. Kawano, T. Takahashi, T. Tomioka, T. Fujii, and S. Sasa, “Current status of reliability of InGaP/GaAs HBTs,” Solid-State Electronics, vol. 41, pp. 1605-1610, 1997.
    [88] D. A. Ahmari, M. T. Fresina, Q. J. Hartman, D.W. Barlage, P. J. Mares, M. Feng, and G. E. Stillman, “High-speed InGaP–GaAs HBTs with a strained In Ga As base,” IEEE Electron Device Lett., vol. 17, pp. 226–228, 1996.
    [89] N. Y. Li, P. C. Chang, A. G. Baca, X. M. Xie, P. R. Sharps, and H. Q. Hou, “ DC characteristics of MOVPE-grown npn InGaP/InGaAsN DHBT's,” Electron. Lett., vol. 36, pp. 81-82, 2000.
    [90] R. E. Welser, P. M. DeLuca, and N. Pan, “Turn-on voltage investigation of GaAs-based bipolar transistors with Ga1-XInXAs1-yNy base layers,” IEEE Electron Device Lett., vol. 21, pp. 554–556, 2000.
    [91] A. G. Baca, C. Monier, P. C. Chang, N. Y. Li, F. Newman, E. Armour, S. Z. Sun, and H. Q. Hou, “High-speed performance of npn InGaAsN based double heterojunction bipolar transistors,” IEEE GaAs IC Symp. Tech. Dig., 2001, pp. 192–194.
    [92] P. M. DeLuca, C. R. Lutz, R. E. Welser, T. Y. Chi, E. K. Huang, R. J. Welty, and P. M. Asbeck, “Implementation of reduced turn-on voltage InGaP HBTs using graded GaInAsN base regions,” IEEE Electron Device Lett., vol. 23, pp. 582–584, 2002.
    [93] M. Hafizi, D. C. Streit, L. T. Tran, K. W. Kobayashi, D. K. Umemodo, A. K. Oki, and S. K. Wang, “Experimental study of AlGaAs/GaAs HBT device design for power application, ” IEEE Electron Device Lett., vol. 12, No. 11, pp. 581-583, 1991
    [94] T. R. Chen, P. C. Chen, C. Gee, and N. B. Chaim, “A high-speed InGaAsP/InP DFB laser with an air-bridge contact configuration.” IEEE Photon. Technol. Lett., vol. 5, No. 1, pp. 1-3, 1993.
    [95] T. Fresina, D. A. Ahmari, P. J. Maries, Q. J. Hartmann, M. Feng, and G. E. Stillman, “High-speed low noise InGaP/GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 16, No. 12, pp. 540-541, 1995.
    [96] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1990.
    [97] H. Wang, K. W. Chang, L. T. Tran, J. C. Cowles, T. R. Block, E. W. Lin, G. S. Dow, A. K. Oki, D.C. Streit, and B. R. Allen, “Low phase noise millimeter-wave frequency sources using InP-based HBT MMIC technology,” IEEE J. Solid-St. Circ., vol. 31, pp. 1419–1425, 1996.
    [98] K. W. Kobayashi, D. K. Umemoto, T. R. Block, A. K. Oki, and D. C. Streit, “A monolithically integrated HEMT-HBT low noise high linearity variable gain amplifier,” IEEE J. Solid-St. Circ., vol. 31, pp. 714–718, 1996.
    [99] T. Yoshimasu, M. Akagi, N. Tanba, and S. Hara, “An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications,” IEEE J. Solid-St. Circ., vol. 33, pp. 1290–1296, 1998.
    [100] K. W. Kobayashi, J. C. Cowles, L. T. Tran, A. G. Aitken, M. Nishimoto, J. H. Elliott, T. R. Block, A. K. Oki, and D. C. Streit, “A 44-GHz-high IP3 InP HBT MMIC amplifier for low DC power millimeter-wave receiver applications,” IEEE J. Solid-St. Circ., vol. 34, pp. 1188–1195, 1999.

    下載圖示 校內:立即公開
    校外:2007-07-06公開
    QR CODE