| 研究生: |
吳佳穎 Wu, Chia-Ying |
|---|---|
| 論文名稱: |
以離子交換程序回收廢脫硝觸媒中鎢及釩之研究 Recovery of Tungsten and Vanadium from Spent SCR Catalysts by Ion Exchange |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 脫硝廢觸媒 、離子交換 、鎢 、釩 、分離 |
| 外文關鍵詞: | spent SCR catalyst, ion exchange, tungsten, vanadium, separation |
| 相關次數: | 點閱:118 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著經濟的蓬勃發展,工業技術與產業持續的製造,如工業鍋爐、燃燒爐與汽機車燃燒燃料的排放,常伴隨著大量氮氧化物的產生造成空氣污染的憂慮。氮氧化物在空氣中會氧化成二氧化氮,對人體造成呼吸道的傷害亦是形成酸雨與臭氧的主因之一。在現有的氮氧化物控制技術中,以選擇性觸媒還原法(Selective catalytic reduction, SCR)經觸媒催化下使 NOx 轉化為無害的 N2 及O2,此系統最為純熟與有效控制 NOx 的排放。然而 SCR 觸媒在長期使用下使觸媒毒化、老化,導致 SCR 觸媒效率降低而需替換,造成固體廢棄物的產生。因此,本研究將廢 SCR 觸媒以「鹼培燒-熱水浸漬-離子交換」程序資源化,特別探討浸漬液之 pH 值、金屬濃度及樹脂與溶液接觸時間的長短等條件,對回收脫硝廢觸媒(Spent SCR catalyst)中含有之鎢、鉬、釩等有價金屬的分離及純化效果之影響。
以「碳酸鈉鹼培燒+熱水浸漬」程序所得廢SCR觸媒浸漬液,其鎢與釩浸出率為90%以上,利用此浸漬條件採用強鹼型 IRA900Cl 樹脂進行離子交換管柱實驗,發現(1)原始浸漬液 pH12.16時,IRA900Cl能同時吸附鎢、釩離子且富集兩種金屬,其吸附量各為69.58g W/L resin、4.16g V/L resin 。(2)當浸漬液添加鹽酸調整pH為8.25時, WO42-、Si(OH)4離子在IRA900Cl親合力比HV2O73-弱,很快於交換尾液中突破,此條件可達成V的分離與富集,其吸附量65.25g V/ L resin。(3)將浸漬液添加氫氧化鈉至pH 為13.34,樹脂上的 NH4+ 官能基密度降低,交換陰離子空缺變少,使WO42-離子相較於VO43-離子更容易吸附在樹脂上,此條件可達成W的分離與富集,其吸附量為42.72g W/L resin。 (4)使用脫附劑2M NaCl+1M NaOH 與5N NH4Cl+2N NH4OH沖提對IRA900Cl樹脂,脫附鎢金屬能力達90%以上。
With rapid economic development throughout the industry, the increase of mobile combustion engines, power plants and other incineration processes are the main sources of air pollution. Selective catalytic reduction (SCR) is one of the NOx treatment methods; it can offer higher NOx control efficiency and produces harmless N2 and H2O as end products. After a period of time, the SCR catalysts will be poisoned due to contamination and result in catalytic deactivation. Therefore, this study demonstrates the combination of the two unit processes to recover tungsten and vanadium from spent SCR catalysts. Those two unit processes are Na2CO3 roasting-hot water leaching and ion exchange.
When the pH value of solution was about 12.16, the IRA900 could adsorb anions such as HVO42-, V2O74-and WO42- . The exchange capacity was determined to be 4.16g V/L resin , 69.58g W/L resin. At pH value range of 8.5~9.5,the IRA900 could selectively load HV2O73- from the solution, the exchange capacity was determined as 65.25g V/ L resin. Under strongly basic condition ( pH 13.34), the IRA900 selectively loads WO42- from the solution, the exchange capacity was determined as 42.72g W/L resin. The results of elution tests showed that the loaded metals could be easily eluted with 2M NaCl+1M NaOH or 5N NH4Cl+2N NH4OH and a 90% metal recovery was reached.
[1] Anik, M,“ Effect of concentration gradient on the anodic behavior of tungsten”, Corros. Sci., 48(12),pp. 4158-4173,2006.
[2] Baes C.F., Mesmer R.E.,“ The Hydrolysis of Cations”, Wiley, New York, 1976.
[3] Bertsch, P.M. , “Aqueous polynuclear aluminum species. In The Environmental Chemistry of Aluminum, ”pp. 87-115,1989.
[4] C.E. Harland,“Ion Exchange: Theory and Practice”, Royal Society of Chemistry Paperbacks Paperback,1994.
[5] Cheng, X., and Bi, X. T. ,“A review of recent advances in selective catalytic NOx reduction reactor technologies”,Particuology, 16, pp1-18, 2014.
[6] Ďurišová Jana ,“Mutual Separation of Vanadium and Tungsten from Aqueous Solution via Electrochemical Reduction and Sorption onto Chelating Resin ”, Sep. Sci. Technol., 44(12), pp. 2750–2760,2009.
[7] Gabelich, J. C., Chen, W. R., Yun, T. I., Coffey, B. M. and Suffet, I. H., “The role of dissolved aluminum in silica chemistry for membrane processes”, Desalination, 180, pp. 307-319,2005.
[8] Gallup, D. L., Sugiaman, F., Capuno, V., Manceau, A. , “Laboratory investigation of silica removal from geothermal brines to control silica scaling and produce usable silicates”, Applied Geochemistry, 18,pp. 1597-1612, 2003.
[9] Gao B.Y., , Chu Y.B., Yue Q.Y., Wang B.J., Wang S.G., “Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content”, J. Environ. Manage.,76(2),pp.143-147,2005.
[10] Hu J., Wang X., Xiao Li., Song S.,and Zhang B. ,“Removal of vanadium from molybdate solution by ion exchange ”,Hydrometallurgy ,95, pp. 203–206,2009.
[11] Huo G., Peng C., Song Q.,and Lu X .,“Tungsten removal from molybdate solutions using ion exchange”,Hydrometallurgy , 147–148 , pp. 217–222,2014.
[12] Iler, R. K. , “The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica”, Wiley- Interscience, pp. 123、210,1979.
[13] John W. van Put,“Crystallisation and processing of ammonium paratungstate (APT) ”, Int. J. Refract. Met. Hard Mater. 13(1-3) ,pp.61-76,1995.
[14] Kelsey G.S.,“The anodic oxidation of tungsten in aqueous base”, J. Electrochem. Soc. 124(6) , pp. 814–819 ,1977.
[15] Kholmogorov A.G.,Kononova O.N., Kachin S.V., Kalyakina O.P., Pashkov G.L., and Kyrilloa V.P. ,“Ion exchange hydrometallurgy of tungsten using anion exchangers with long-chained cross-linking agents”, Hydrometallurgy,53(2), pp.177–187,1999.
[16] Kobayashi M.and Hagi M. ,“ V2O5-WO3/TiO2-SiO2-SO42− catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2 ”, Applied Catalysis B: Environmental, 63(1-2), pp.104-113, 2006.
[17] Kononovaa O.N., Kholmogorovb A.G., Kachina S.V., Kalyakinaa O.P. and Sadovskayaa E.V. ,“Ion exchange recovery of molybdenum from nitric acidic solutions using macroporous anion exchangers with long-chained cross-linking agents”,Hydrometallurgy ,68(1-3),pp.83–87,2003.
[18] Li Q., Zeng L., Xiao L., Yang Y.and Zhang Q. ,“Completely removing vanadium from ammonium molybdate solution using chelating ion exchange resins ”,Hydrometallurgy, 98(3-4) ,pp. 287–290 ,2009.
[19] Marczenko Z. and Balcerzak M., “Separation, Preconcentration an Spectrophotometry in Inorganic Analysis”, Elsevier ,pp.528, 2000。
[20] Mazurek Krzysztof ,“Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes”,Hydrometallurgy ,134–135 ,pp.26-31,2013.
[21] Nguyen T.H.and Lee M.S. ,“Separation of molybdenum and vanadium from acid solutions by ion exchange”,Hydrometallurgy ,136, pp. 65–70,2013.
[22] Olazabal M.A., Orivea M.M. and Fernandez L.A., Madariaga J.M., “Selective extraction of vanadium (V) from solutions containing molybdenum (VI) by ammonium salts dissolved in toluene”, Solvent Extr Ion Exch. 10(4) , pp. 623-635,1992.
[23] Qi G., and Yang R. T. ,“ Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst”, J. Catal., 217(2),pp. 434-441, 2003.
[24] Sheikholeslami, R. and Tan, S. , “Effect of water quality on silica fouling of desalination plants”, Desalination, 126, pp. 267-280 (1999).
[25] Shishkov D.A. and Koleva E.G,“ Investigation of ion-exchange behaviour of tungsten(VI)and molybdenum(VI)from formic acid solutions”, Talanta,12(10),pp. 865-870,1965.
[26] Soldi T.,Pesavwnto M.and Alberti G. ,“Seoaration of vanadium(V)and(IV) by sorption on an iminodiacetic chelating resin”,Analytica Chimica Acta,pp.27-37 ,1996.
[27] Sugita, H., Suzuki, R., Bando, Y. and Nakamura, M. , “Effect of aluminum ion on silica removal from geothermal brine by seeding method using silica gel”, Journal of Chemical Engineering of Japan,31(3), pp.462-464,1998.
[28] Vezina J.A.,and Gow W.A.,“Canadian mining and metallurgical bulletin”, 59(656),pp.141 8-1422,1966.
[29] Wang X., Xiao C., Wang M.and Xiao W. ,“Removal of silicon from vanadate solution using ion exchange and sodium alumino-silicate precipitation”, Hydrometallurgy ,107 (3-4),pp. 133–136 ,2011.
[30] Wang X.W., Wang M.Y., Shi L.H., Hu J.A.and Qiao P. ,“Recovery of vanadium during ammonium molybdate production using ion exchange”, Hydrometallurgy, 104(2),pp. 317-321,2010..
[31] Weber WJ. ,“ Physicochemical processes for water quality control”, Wiley- Interscience, New York,1972.
[32] Zeng L., Li, Q., and Xiao L. ,“Extraction of vanadium from the leach solution of stone coal using ion exchange resin. ”, Hydrometallurgy, 97(3-4), pp.194-197,2009.
[33] Zeng Li, Li Q., and Xiao L. ,“Extraction of vanadium from the leach solution of stone coal using ion exchange resin”,Hydrometallurgy, 97 pp. 194–197,2009.
[34] Zhao Z., Hu F., Hu Y., Wang S., Sun P., Huo G., and Li, H. ,“Adsorption behaviour of WO42− onto 201×7 resin in highly concentrated tungstate solutions”, Int. J. Refract. Met. Hard Mater., 28(5), pp.633-637,2010.
[35] Zhao, D., SenGupta A. K., Stewart, L., “Selective Removal of Cr(VI) Oxyanions with a New Anion Exchanger”, Ind. Eng. Chem. Res., 37(11), pp. 4383-4387, 1998
[36] 丁桓如、吳春華、龔雲峰、聞人勤,“工業用水處理工程”,清華大學出版社,第199-201頁,2005。
[37] 文穎頻、張啟修、肖連生,“離子交換法從解鉬液中富集回收鎢鉬”,稀有金屬與硬質合金,第142期,2000。
[38] 朱屯,“萃取與離子交換”,冶金工業出版社,第387-471頁,2005。
[39] 何燦穎,“工業爐降低氮氧化物技術”,技術與訓練,第19卷,第1(3)期,1994。
[40] 吳以壯,“以選擇性觸媒還原技術同時去除NO及VOCS之效率測試研究”,交通大學,碩士論文,2005。
[41] 宋阜、朱賓權,“離子交換法分離富集鎢酸鈉溶液中的釩”,稀有金屬與硬質合金,第34卷,第3期, 2006。
[42] 李洪桂、李波、趙中偉,“鎢冶金離子交換新工藝研究”,稀有金屬與硬質合金,第35卷,第1期, 2007。
[43] 李洪桂、李波、趙中偉,“鎢冶金離子交換新工藝研究”,稀有金屬與硬質合金,第35卷,第1期, 2007。
[44] 肖連生、王學文、李青剛,“一種含釩鉬酸鹽溶液深度除釩的方法”,中國專利,CNl01062785,2006。
[45] 肖連生、張啟修、龔柏藩,“密實移動床-流化床離子交換除鉬技術在工業上的應用”,中國鎢業, 第16卷,第2期,第26-29頁,2001。
[46] 姚能平、陳建國、梅德華、林偉、鄭建東,“大孔弱鹼陰離子交換樹脂對低濃度鎢酸跟吸附量的研究”,滁州學院學報,第15卷,第5期,2013。
[47] 孫健程,“D201離子交換樹脂分離釩、磷、矽的應用基礎”,中南大學,碩士論文,2008。
[48] 張汝松,李志國,張雷,“選擇性催化還原脫硝催化劑生產技術”,工業催化,第19卷,第8期,2011。
[49] 張帥、張華、馮培忠,“鉬資源回收工藝現狀及展望水”,無機鹽工業,第43卷,第12期, 2011。
[50] 梁宏、盧基爵,“鉬離子交換法從含鉬酸性廢液中回收鉬”,1999。
[51] 陳川溪,“離子交換法分離鎢酸鹽溶液中的鉬”, 中國專利, CN 88105712,1992。
[52] 陳其顥、朱林,“SCR失效催化劑及其處置與再利用技術”,電力科技與環保,第28卷,第3期, 2012。
[53] 陳慶根,“鉬精礦熱壓堿浸一離子交換提取鉬試驗研究”,礦產綜合利用,2014
[54] 曾添文、戴文燦、張志、朱柒金,“離子交換樹脂對釩(V)交換性能的研究離子交換與吸附”,第35卷,第1期,第453-458頁,2002。
[55] 黃成通,“鎢的離子交換新工藝的發展”,稀有金屬與硬質合金,第31卷,第3期,2003。
[56] 黃竹青,“關於大型燃煤電站鍋爐選擇性催化還原脫硝技術的探討”,中國能源與環境,第27卷,第12期,2005。
[57] 楊守志,“釩冶金”,現代有色金屬冶金科學技術叢書,冶金工業出版社,2010。
[58] 楊衛娟、周俊虎、劉建忠、岑可法,“選擇催化還原SCR脫硝技術電站鍋爐的應用”,熱力發電,第34卷,第9期, 2005 。
[59] 劉茂盛、孫培梅、李運姣、李洪桂,“-關于鎢冶煉離子交換工藝除雜效果的探討”,稀有金屬與硬質合金,第2期,第8-15頁,1990。
[60] 劉振楠,“鎢濕法冶金離子交換新工藝的研究”,中南大學,碩士學位論文,2008。
[61] 劉慷、張強、虞宏、余洪,“火電廠脫NOx用SCR催化劑種類及工程應用”,電力環境保護, 第25卷,第4期,第9-12頁,2009。
[62] 鄧文麟,“離子交換工藝生產仲鎢酸銨的進展”,鎢鉬科技,1987。
[63] 鄧熙聖,“氮氧化物減量技術-國內外選擇性觸媒還原法應用狀況及技術發展調查柴油車選擇性還原觸媒系統(SCR)之介紹與系統開發”,行政院環保署,1998。
[64] 謝佳穎,“以離子交換樹脂分離藍泥浸漬液中鈷、鎳、鋁之研究”,成功大學,碩士論文,2012。