| 研究生: |
賴畇希 Lai, Yun-Hsi |
|---|---|
| 論文名稱: |
多項式變曲率滑動支承之類比式硬體模擬與應用多軸向振動台進行即時複合試驗研究 Analog Hardware-in-the-Loop Simulation and Real-Time Hybrid Testing of PSIVC Systems by Multi-Axial Seismic Test System |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 即時複合試驗 、類比式硬體模擬 、多軸向振動台 、記憶體共享光纖網路 、變曲率滑動支承 、振動台控制誤差 、Butterworth濾波器 |
| 外文關鍵詞: | real-time hybrid testing, analog hardware-in-the-loop simulation, multi-axial seismic test system, share common memory (SCRAMNet), sliding isolator with variable curvature, shaking table control error, Butterworth filter |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結構控制元件或控制系統是否能夠有效抑制結構物受地震外力作用下之反應,最直接的驗證方法為進行實尺寸結構之振動台試驗。然而,考量振動台試驗的經濟性與效率性,往往將振動台試驗中的主結構以數值模型取代,並將欲量測之結構控制元件或控制系統安裝於振動台上進行實驗,亦即「即時振動台複合試驗」,簡稱「即時複合試驗」。即時複合試驗概念係將一結構系統分為主結構與次結構,其中主結構以數值模型取代,而次結構為欲量測之元件。由於真實結構系統之主結構與次結構存在互制關係,因此即時複合試驗方法係透過直接量測次結構絕對加速度計算之層間剪力至主結構數值模型,同時以振動台呈現主結構之反應,實現主結構與次結構之互制效應。鑑於即時複合試驗為一種先進的實驗技術,其實驗結果容易受到主結構數值模型誤差、振動台控制誤差、感測器量測誤差、訊號傳輸誤差以及數位類比訊號轉換誤差等誤差影響,因此本文提出用於模擬即時複合試驗之類比式硬體模擬,以進行即時複合試驗結果之預估與驗證。本文以單自由度主結構配置多項式變曲率滑動支承樓板隔震系統之結構為例,應用多軸向振動台與記憶體共享光纖網路平行運算設備,進行即時複合試驗,驗證類比式硬體模擬模擬即時複合試驗的可行性。由於即時複合試驗存在振動台控制誤差,因此本文針對多軸向振動台之控制誤差引入Butterworth高通濾波器,模擬多軸向振動台對於振動台加速度命令經高通濾波之現象,並修正類比式硬體模擬之數值模型。最後,本文透過比較修正前與修正後的類比式硬體模擬與即時複合試驗之誤差指標,探討振動台控制誤差對於類比式硬體模擬的影響,並確認類比式硬體模擬應用於模擬即時複合試驗的可行性。
Compared to the shaking table testing (STT), the real-time hybrid testing (RTHT) is a more cost-effective experimental technique. The RTHT divides a testing target system into a primary structure whose dynamic responses can be simulated by a numerical model, and a substructure that is experimentally tested with a shaking table. Moreover, due to the mutual interaction between the primary structure and the physical substructural system, the methodology of the RTHT is to feedback the shear force by measuring the absolute acceleration of the substructure to the numerical model in real-time. Simultaneously, the shaking table simulates the numerical primary structure response, which can realize the mutual effect of the primary structure and the substructure. In order to simulate the results of the RTHT, the analog hardware-in-the-loop simulation (AHIL) is introduced and examined in this thesis. This thesis takes a single-degree-of-freedom primary structure with the polynomial sliding isolators with variable curvature floor isolation system (PSIVC-FIS) as an example. To conduct the RTHT by the multi-axial seismic test system (MAST) with the real-time fiber-optic connected share memory network (SCRAMNet), the AHIL is developed to simulate the performance of the proposed RTHT. Due to the displacement performance of the MAST is subjected to high-pass filtering on the shaking table acceleration command, this thesis identifies the filter model and adopts it to the AHIL to investigate the influence on the results of the RTHT. By comparing the error indicators between the results of the AHIL and the RTHT, the feasibility of the proposed AHIL to emulate the RTHT is verified.
[1] Abdalla, O., Hammad, S. A., & Yousef, H. A. (2014). A Framework for Real Time Hardware in the loop Simulation for Control Design.
[2] Butterworth, S. (1930). On the theory of filter amplifiers. Wireless Engineer, 7(6), 536-541.
[3] Carrion, J. E., & Spencer Jr, B. F. (2007). Model-based strategies for real-time hybrid testing (1940-9826).
[4] Chu, S. Y., Soong, T. T., Reinhorn, A. M., Helgeson, R. J., & Riley, M. A. (2002). Integration issues in implementation of structural control systems. Journal of Structural Control, 9(1).
[5] Chu, S., Lo, S., & Li, M. (2006). APPLICATION OF SCRAMNET SYSTEM IN REAL-TIME PSEUDODYNAMIC TEST AND SIMULATION International Conference on Earthquake Engineering,
[6] Chu, S.-Y., Lu, L.-Y., & Yeh, S.-W. (2018). Real-time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table. Structural Control and Health Monitoring, 25(3).
[7] Chung, W.-J., Yun, C.-B., Kim, N.-S., & Seo, J.-W. (1999). Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures. Engineering Structures, 21(4), 365-379.
[8] Dermitzakis, S. N., & Mahin, S. A. (1985). Development of substructuring techniques for on-line computer controlled seismic performance testing (UCB/EERC-85/04).
[9] Hakuno, M., Shidawara, M., & Hara, T. (1969). DYNAMIC DESTRUCTIVE TEST OF A CANTILEVER BEAM, CONTROLLED BY AN ANALOG-COMPUTER. Proceedings of the Japan Society of Civil Engineers, 1969(171), 1-9.
[10] Horiuchi, T., Inoue, M., Konno, T., & Yamagishi, W. (1999). Development of a Real-Time Hybrid Experimental System Using a Shaking Table : (Proposal of Experiment Concept and Feasibility Study with Rigid Secondary System). JSME International Journal Series C, 42(2), 255-264.
[11] Ledin, J. A. (1999). Hardware-in-the-loop simulation. Embedded Systems Programming, 12, 42-62.
[12] Lu, L.-Y., Lee, T.-Y., & Yeh, S.-W. (2011). Theory and experimental study for sliding isolators with variable curvature. Earthquake Engineering & Structural Dynamics, 40(14), 1609-1627.
[13] Lu, L.-Y., Lee, T.-Y., Juang, S.-Y., & Yeh, S.-W. (2013). Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study. Engineering Structures, 56, 970-982.
[14] Nakashima, M., Kato, H., & Takaoka, E. (1992). Development of real-time pseudo dynamic testing. Earthquake Engineering & Structural Dynamics, 21(1), 79-92.
[15] Reinhorn, A., Sivaselvan, M., Weinreber, S., & Shao, X. (2004). Real-time dynamic hybrid testing of structural systems World Conference on Earthquake Engineering.
[16] Takanashi, K., Udagawa, K., & Tanaka, H. (1980). NON-LINEAR EARTHQUAKE RESPONSE ANALYSIS OF STRUCTURES BY A COMPUTER-ACTUATOR ON-LINE SYSTEM Part III : Reponse Analyses of 1-Bay 2-Story Steel Frames. Transactions of the Architectural Institute of Japan, 288, 115-124.
[17] Takanashi, K., Udagawa, K., Seki, M., Okada, T., & Tanaka, H. (1975). NON-LINEAR EARTHQUAKE RESPONSE ANALYSIS OF STRUCTURES BY A COMPUTER-ACTUATOR ON-LINE SYSTEM : Part 1 Detail of the System. Transactions of the Architectural Institute of Japan, 229, 77-83,190.
[18] Thoen, B. K. (2004). 469D seismic digital control software. MTS Corporation.
[19] Tian, Y., Shao, X., Zhou, H., & Wang, T. (2020). Advances in Real-Time Hybrid Testing Technology for Shaking Table Substructure Testing. Frontiers in Built Environment, 6.
[20] Udagawa, K., Takanashi, K., & Tanaka, H. (1978). NON-LINEAR EARTHQUAKE RESPONSE ANALYSIS OF STRUCTURES BY A COMPUTER-ACTUATOR ON-LINE SYSTEM : Part II : Response Analyses of One Bay-One Story Steel Frames with Inelastic Beams. Transactions of the Architectural Institute of Japan, 268, 49-59.
[21] Wang, J.-T., Gui, Y., Zhu, F., Jin, F., & Zhou, M.-X. (2016). Real-time hybrid simulation of multi-story structures installed with tuned liquid damper. Structural Control and Health Monitoring, 23(7), 1015-1031.
[22] WANG, T., & CHENG, C. (2011). A Model-based Predictor-Corrector Algorithm for Substructure Hybrid Test System Proceedings of the Ninth Pacific Conference on Earthquake Engineering.
[23] Yang, T., Mosqueda, G., & Stojadinovj , B. (2008). Evaluating the quality of hybrid simulation test using an energy-based approach. World Conference on Earthquake Engineering.
[24] Zhang, R., Lauenstein, P. V., & Phillips, B. M. (2016). Real-time hybrid simulation of a shear building with a uni-axial shake table. Engineering Structures, 119, 217-229.
[25] 朱凱業(2013)。多項式變曲率滑動支承之混合實驗。國立成功大學土木工程研究所碩士論文。
[26] 吳依寰(2011)。摩擦型阻尼器系統之擬動態試驗與振動台驗證。國立成功大學土木工程研究所碩士論文。
[27] 林亮宇(2020)。應用即時硬體模擬進行複合試驗之雛型規劃與檢討。國立成功大學土木工程研究所碩士論文。
[28] 林煒松(2019)。採用不同振動台進行即時複合實驗之效能探討。國立成功大學土木工程研究所碩士論文。
[29] 馬士勛(2020)。配置PSIVC系統之即時類比式硬體模擬與複合試驗。國立成功大學土木工程研究所碩士論文。
[30] 許敬昀(2014)。摩擦型調諧質量阻尼器系統之混合實驗驗證。國立成功大學土木工程研究所碩士論文。
[31] 程佩青(2001)。數字信號處理教程。清華大學出版社有限公司。
[32] 黃百誼,賴晉達,柴駿甫&林凡茹(2019)。關鍵零組件測試系統介紹。國家地震工程研究中心年度研究成果報告,157。
[33] 黃智遠(2019)。配置LSCMD多自由度系統之類比式硬體模擬試驗。國立成功大學土木工程研究所碩士論文。
[34] 葉士瑋(2017)。具摩擦特性振動控制系統即時複合實驗之振動台實驗驗證。國立成功大學土木工程研究所博士論文。
[35] 葉士瑋,張汎博,盧煉元,蕭輔沛(2021)。PRTTM記憶體共享即時控制器標準作業程序書。國家地震工程研究中心技術報告,報告編號:NCREE-21-010。
[36] 賈博宇(2016)。振動台效能對PFCMD即時複合實驗之影響探討。國立成功大學土木工程研究所碩士論文。
[37] 鄧孟澤(2019)。應用數位式硬體模擬試驗進行即時振動台複合實驗誤差之階段性探討。國立成功大學土木工程研究所碩士論文。
[38] 顏呈璁(2009)。多重取樣量測對擬動態試驗誤差之影響。國立成功大學土木工程研究所碩士論文。
[39] 羅仕杰(2005)。記憶體共享光纖網路設備於即時擬動態試驗之初步研究。國立暨南國際大學土木工程研究所碩士論文。
校內:2026-07-29公開