| 研究生: |
黃聖捷 Huang, Sheng-Jie |
|---|---|
| 論文名稱: |
具氧化銦鋅堆疊氧化銦錫結構於磷光發光二極體之研究 Investigation of Indium Zinc Oxide Stacked Indium-Tin Oxide on Phosphorescent Organic Light Emitting Diodes |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 多層堆疊 、磷光有機發光二極體 、二氧化矽粗糙化結構 |
| 外文關鍵詞: | multilayer stack, phosphorescent organic light emitting diodes, SiO2 roughness structure |
| 相關次數: | 點閱:65 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於傳統有機發光二極體大部分皆是利用氧化銦錫(ITO)薄膜當作電極,雖然氧化銦錫薄膜具有高穿透與高導電性質,但是卻具有粗糙之表面,粗糙的薄膜表面形貌會受到局部電場較強的影響而產生尖端放電效應,對後續傳輸層或發光層的塗佈產生影響,因此本論文利用射頻式磁控濺鍍系統(RF-magnetron sputter)來製作氧化銦鋅(IZO)堆疊氧化銦錫結構取代傳統有機發光二極體(OLED)之電極,因氧化銦鋅薄膜具有平坦之薄膜表面,其堆疊於氧化銦錫薄膜之上是可以改善氧化銦錫表面粗造缺點,並有利於後續製作傳輸層或發光層,使得元件效率有效提升。接著利用高分子材料聚(9-乙烯咔唑) (PVK)與雙(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合銥(Firpic)材料來製作有機發光二極體之發光層,探討氧化銦鋅堆疊氧化銦錫結構對元件特性的影響,並利用雷射干涉微影技術製作粗糙化之表面於玻璃基板背部,因具有粗糙化結構之玻璃基板比起傳統無任何結構設計之玻璃基板,可以改善玻璃基板與空氣因折射率差導致的光反射,因此可有效降低玻璃基板與空氣間的反射率,使得有機發光二極體之發光亮度與發光效率有效地被提升。利用二氧化矽粗糙化結構於基板背部作為有機發光二極體元件之抗反射層,當二氧化矽粗糙化結構週期為0.75 μm時,比起傳統無任何結構設計玻璃基板,在波長470~500 nm之間,其結構之平均反射率由8.25%下降至約為3.02%。此外將二氧化矽粗糙化結構製作於磷光有機發光二極體元件,在週期為0.75 μm時,其最高發光亮度提升至336 cd/m2,而最大發光效率提升至7.58 cd/A。
Most of the conventional organic light-emitting diodes used indium tin oxide (ITO) film as an electrode, because the ITO film had high transmission and conductivity. However, ITO film had a roughness surface. The roughness surface morphology of the ITO film was likely to cause problems in the fabrication of the subsequent transport layer or light emitting layer. Therefore, we used RF-Sputter to fabricate indium zinc oxide (IZO) stacked ITO structures instead of traditional electrodes for organic light-emitting diodes (OLEDs) Because IZO film had a smooth surface, stacking IZO on the ITO film could improve the roughness defects of ITO. Then, using poly (9-vinylcarbazole)(PVK) and Bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III(Firpic) to fabricate the light-emitting layers of OLED, and discussing the device characteristics of the relationship between IZO stacked ITO film. Additionally, we used laser interference lithography to fabricate silicon dioxide (SiO2) on the back of the substrate. The difference in refractive index between the glass and air would create light reflection, however the roughness structure could effectively reduce the reflection. Among the different period of the SiO2 roughness structure, the period of 0.75 μm had the minimum average reflection 3.02% at 470~500 nm. The maximum luminous of the OLED with SiO2 roughness structure period for 0.75 um was increased to 336 cd/m2, while the maximum luminous efficiency was increased to 7.76 cd/A.
[1] M. Pope, H. Kallmann, and P. Magnante, “Electron spin resonance study of partially reduces vanadium pentoxide,” J. Chem. Phys., vol. 38, pp. 2022-2024, 1963.
[2] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
[3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diode based on conjugated polymer,” Nature, vol. 347, pp. 539-541, 1990.
[4] F. Streintz, “Ueber die elektrische leitfähigkeit von gepressten pulvern,” Ann. Phys. vol. 314, p. 854, 1902.
[5] K. Bädeker, “Über die elektrische leitfähigkeit und die thermoelektrische kraft einiger schwermetallverbindungen,” Ann. Phys. vol. 327, p. 749, 1907.
[6] T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated Indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., vol. 73, pp. 4344-4350, 1993.
[7] Y. S. Park, H. K. Kim, and S. W. Kim, “Thin Ag layer inserted GZO multilayer grown by roll-to-roll sputtering for flexible and transparent conducting electrodes,” J. Electrochem. Soc., vol. 157, pp. J301-J306, 2010.
[8] T. Kim, B. H. Choi, J. S. Park, S. M. Lee, Y. S. Lee, and L. S. Park, “Transparent conductive ITO/Ag/ITO multilayer films prepared by low temperature process and physical properties,” Displays, vol. 520, pp. 209/[485]–214/[490], 2010.
[9] Y. Luo, L. Wang, Y. Ding, L. Li, and J. Shi, “High light-extracting efficiency for OLED directly fabricated on double-side nanotextured silica substrate,” Opt. Lett., vol. 38, pp. 2394-2396, 2013.
[10] C. Shen, I. G. Hill, and A. Kahn, “Role of electrode contamination in electron injection at Mg:Ag/Alq3 interfaces,” Adv. Mater., vol. 11, pp. 1523-1527, 1999.
[11] D. Kudryashov, A. Gudovskikh, and K. Zelentsov, “Low temperature growth of ITO transparent conductive oxide layers in oxygen-free environment by RF magnetron sputtering,” J. Phys.: Conf. Ser., vol. 461, p. 012021, 2013.
[12] J. H Kim, T. Y. Seong, K. J. Ahn, K. B. Chung, H. J. Seok, H. J. Seo, and H. K Kim, “The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films,” Appl. Surf. Sci., vol. 440, pp. 1211–1218, 2018.
[13] D. H. Shin, Y. H. Kim, J. W. Han, K. M. Moon, and R. I. Murakami, “Effect of process parameters on electrical, optical properties of IZO films produced by inclination opposite target type DC magnetron sputtering,” Trans. Nonferrous Met. Soc. China, vol. 19, pp. 997-1000, 2009.
[14] H. C. Pan, M. H. Shiao, C. Y. Su, and C. N. Hsiao, “Influence of sputtering parameter on the optical and electrical properties of zinc-doped indium oxide thin films,” J. Vac. Sci. Technol. A, vol. 23, p. 1187, 2005.
[15] T. Kiba, K. Yanome, M. Kawamura, Y. Abe, K. H. Kim, J. Takayama, and A. Murayama, “Emission enhancement in indium zinc oxide (IZO)/Ag/IZO sandwiched structure due to surface plasmon resonance of thin Ag film,” J. Appl. Surf. Sci., vol. 389, pp. 906-910, 2016.
[16] Y. C. Kim, S. J. Lee, I. K. Oh, S. Seo, H. Kim, and J. M. Myoung, “Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes,” J. Alloy. Compd., vol. 688, pp. 1108-1114, 2016.
[17] S. M. Lee, H. W. Koo, T. W. Kim, and H. K. Kim, “Asymmetric ITO/Ag/ZTO and ZTO/Ag/ITO anodes prepared by roll-to-roll sputtering for flexible organic light-emitting diodes,” Sol. Energy Mater. Sol. Cells, vol. 172, pp. 277-284, 2017.
[18] K. P. Sibina, G. Srinivas, H. D. Shashikala, A. Dey, N. Sridhara, and A. K. Sharma, H. C. Barshilia, “Highly transparent and conducting ITO/Ag/ITO multilayer thin films on FEP substrates for flexible electronics applications,” Surf. Coat. Technol., vol. 343, pp. 115-120, 2017.
[19] H. Xu, L. Lan, M. Xu, M. Li, D. Luo, P. Xiao, and J. Peng, “Low-Roughness and Easily-Etched Transparent Conducting Oxides with a Stack Structure of ITO and IZO,” ECS J. Solid State Sci. Technol., vol. 2, p. R245, 2013.
[20] R. F. Garcia, L. Zeng, S. Khadir, M. Chakaroun, A. P. A. Fischer, and A. Boudrioua, “Enhanced electroluminescence of an organic light-emitting diode by localized surface plasmon using Al periodic structure” J. Opt. Soc. Am. B, vol. 33, pp. 246-252, 2016.
[21] C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express, vol. 16, pp. 10701-10708, 2008.
[22] J. D. Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam inter-ference lithography:Upgrading a Lloyd’s interferometer for sin-gle-exposure hexagonal patterning,” Opt. Lett., vol. 34, pp. 1783-1785, 2009.
[23] V. A. Dao, T. Le, T. Tran, H. C. Nguyen, K. Kim, J. Lee, S. Jung, N. Lakshminarayan, and J. Yi, “Electrical and optical studies of transparent conducting ZnO:Al thin films by magnetron DC sputtering,” J. Elec-troceram., vol. 23, pp. 356-360, 2009.
[24] X. Bie, J. G. Lu, L. Gong, L. Lin, B. H. Zhan, and Z. Z. Ye, “Transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering at low temperature,” Appl. Surf. Sci., vol. 256, pp. 289-293, 2009.
[25] R. F. Bunshah and A. C. Raghuram, “Activated reactive evaporation process for high rate deposition of compounds,” J. Vac. Sci. Technol., vol. 9, pp. 1385-1388, 1972.
[26] B. R. Moraes, N. S. Campos, and C. M. S. Izumi, “Surface-enhanced Raman scattering of EDOT and PEDOT on silver and gold nanoparticles,” Vib. Spectrosc., vol. 96, pp. 137-142, 2018.
[27] M. Petrosino and A. Rubino, “Effects of the PEDOT interface trap distribution in polymeric OLEDs,” Org. Electron., vol. 12, pp. 1159-165, 2011.
[28] J. Wang, F. Zhang, B. Liu, Z. Xu, J. Zhang, and Y. Wang, “Emission colour-tunable phosphorescent organic light-emitting diodes based on the self-absorption effect and excimer emission,” J. Phys. D-Appl. Phys., vol. 46, p. 015104, 2013.
[29] J. Y. Park and R. C. Advincula, “Tunable electroluminescence properties in CdSe/PVK guest-host based light-emitting devices,” Phys. Chem. Chem. Phys., vol. 16, pp.8589-8593, 2014.
[30] S. Emelyanova, V. Chashchikhin, and A. Bagaturyants, “Atomistic multiscale simulation of the structure and properties of an amorphous OXD-7 layer,” Chem. Phys. Lett., vol. 590, pp. 101-105, 2013.
[31] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Appl. Phys. Lett., vol. 70, pp.152-154, 1997.
[32] H. C. Pan, M. H. Shiao, C. Y. Su, and C. N. Hsiao, “Influence of sputtering parameter on the optical and electrical properties of zinc-doped indium oxide thin films,” J. Vac. Sci. Technol. A, vol. 23, pp. 1187-1191, 2005.
[33] G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys., vol. 47, p. 4086, 1976.
[34] P. K. Song, Y. Shigesato, M. Kamei, and I. Yasui, “Electrical and Structural Properties of Tin-Doped Indium Oxide Films Deposited by DC Sputtering at Room Temperature,” Jpn. J. Appl. Phys., vol. 38, pp. 2921-2927, 1999.
[35] L. Lu, H. Shen, H. Zhang, F. Jiang, B. Li, and Long Lin, “Effects of Ar flow rate and substrate temperature on the properties of AZO thin films by RF magnetron sputtering,” Optoelectron. Adv. Mater. Rapid Commun., vol. 4, pp. 596–600, 2010.
[36] T. Kim, B. H. Choi, J. S. Park, S. M. Lee, Y. S. Lee, and L. S. Park, “Transparent conductive ITO/Ag/ITO multilayer films prepared by low temperature process and physical properties,” Displays, vol. 520, pp. 209/[485]–214/[490], 2010.