簡易檢索 / 詳目顯示

研究生: 陳彥廷
Chen, Yan-Ting
論文名稱: 應用數值模擬於非牛頓冪次律流體流經曲面邊界之層流凝結分析
Simulation for Condensation Analysis of Non-Newtonian Power-Law Fluid Boundary Layer Flow over Curved Surface
指導教授: 陳朝光
Chen, Cha'o-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 62
中文關鍵詞: 計算流體力學非牛頓冪次律流體曲面邊界凝結
外文關鍵詞: Computational fluid dynamic (CFD), power-law non-Newtonian fluid, curved surface, condensation
相關次數: 點閱:103下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文討論以CFD商業軟體之Ansys中Fluent軟體進行數值模擬,研究以非牛頓流體中的冪次律流體在流過曲面邊界上層流之凝結分析,得到表面摩擦力、局部熱通量以及凝結厚度…等數據後,並進一步討論在曲面幾何邊界流場下速度與溫度的關係跟趨勢。首先,將本次重點放在流場之幾何曲率半徑以及流動特性指數(n)上,分別討論不同的曲率半徑對流場的影響,其中討論薄膜厚度和薄膜內溫度分布,以及不同的流動特性指數(n)所造成的影響,其中包括凝結液膜厚度、局部紐賽數、壁面剪應力和液膜內速度跟溫度的分布。除了上述討論兩種主題之外,也討論流場的雷諾數和流體的普朗特數對流場的影響。最後,可以得出以下結論:
    1.薄膜厚度與雷諾數、普朗特數成反比關係,與流動特性指數成正比關係。在曲率半徑上,對於擬塑性流體而言亦成反比關係,對於膨脹性流體則成正比關係。
    2.局部紐賽數以及平均紐賽數與普朗特數和流動特性指數成正比。
    3.壁面剪應力和流動特性指數成正比。
    4.薄膜內溫度分布的部分,普朗特數以及流動特性指數皆與溫度梯度和溫度極值成正比。當流體為擬塑性流體則溫度梯度和溫度極值和曲率半徑成反比,膨脹性流體則成正比。薄膜內速度分布的部分,流動特性指數和速度梯度、速度成反比。

    In this paper, numerical simulation had been conducted in order to study the condensation behavior of the power-law non-Newtonian fluid on the curved surface. After obtaining data of surface friction, local heat flux, condensation thickness, and etc., then further discuss the relation between velocity and temperature under different geometry. First of all, the main focus is curvature and power-law index. Then the effect of curvature on the flowing behavior, thin film thickness and temperature distribution is discussed. Furthermore, the influence of power-law index is discussed. Besides the two topic mentioned above, Reynolds number and Prandtl number are discussed as well.
    With the simulation results, following conclusion can be made:
    1. Thin film thickness is inversely correlated to Reynolds number and Prandtl number, but correlated to power-law index. As for the curvature, pseudo plastic fluid is inversely correlated but dilatant fluid is correlated.
    2. Local Nusselt number, average Nusselt number and Prandtl number are proportional to power-law index.
    3. Surface shearing stress is correlated to power-law index.
    4. As for the temperature profile within the thin film, Prandtl number and power-law index are correlated to temperature gradient and maximum temperature. If the fluid is pseudo plastic, then temperature gradient and maximum temperature are in an anti-correlation with curvature. The results is completely the opposite if it is dilatant fluid. As for the velocity distribution, power-law index is inversely correlated to velocity gradient and velocity.

    摘要 I 目錄 XI 表目錄 XV 圖目錄 XVI 符號表 XVIII 希臘符號說明 XXII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與背景 6 第二章 凝結熱傳之理論介紹 9 2.1 前言 9 2.2 凝結現象的理論分類 9 2.3 凝結熱傳遞增強方法及影響主因 10 第三章 模型建構與理論分析 12 3.1 模型建構 12 3.2 基本假設 13 3.3 系統之統御方程式(Governing Equations) 13 3.3.1 連續方程式(Continuity Equation) 13 3.3.2 動量方程式(Momentum Equation) 13 3.3.3 能量方程式(Energy Equation) 14 3.4 系統之邊界條件(Boundary Equations) 14 3.5 非牛頓流體(Non-Newtonian Fluid) 16 第四章 數值方法 20 4.1 概述 20 4.2 網格分割 21 4.3 流動模型-Volume of Fluid (VOF) 22 4.4 數值求解方法 23 4.4.1. 壓力與速度之耦合求解-Coupled 演算法 24 4.4.2. 梯度離散-Least Squares Cell Based 25 4.4.3. 動量、能量方程式離散-二階迎風(Second Order Upwind) 27 4.4.4. 壓力差值-PRESTO! 28 4.4.5. 收斂標準與殘值 29 4.5 後處理所使用之無因次參數 29 4.5.1. 熱對流係數(Convection coefficient) 30 4.5.2. 普朗特數(Prandtl number) 31 4.5.3. 局部紐賽數(Local Nusselt number) 32 4.5.4. 平均紐賽數(Average Nusselt number) 33 4.5.5. 雷諾數(Reynolds number) 33 4.5.6. 摩擦係數(Friction Coefficient, Cf) 34 第五章 模擬結果分析與討論 35 5.1 網格獨立性測試 35 5.2 雷諾數對於流場分析 38 5.3 曲面半徑對物理量的影響 43 5.3.1. 曲面半徑與薄膜厚度的關係 43 5.3.2. 曲面半徑與薄膜溫度分布關係 44 5.4 普朗特數對流場的影響 46 5.5 流動特性指數 n 對於流場分析 49 5.5.1. 流動特性指數 n 對於液膜厚度關係 49 5.5.2. 流動特性指數 n 對於局部紐賽數關係 51 5.5.3. 流動特性指數 n 對於壁面剪應力和摩擦係數關係 53 5.5.4. 流動特性指數 n 對於液膜內速度分布關係 55 5.5.5. 流動特性指數 n 對於液膜內溫度分布關係 56 第六章 總結與未來建議 57 6.1 總結 57 6.2 未來展望以及建議 58 參考文獻 59

    【1】 Sang, II Lee., and Hee, Cheon No., 1998, “Improvement of direct contact condensation model of relap5/mod3.1 for passive high-pressure injection system,” Annals of Nuclear Energy, Vol. 25, pp. 677-688.
    【2】 Hun Ju, Seong, Cheon No, Hee, and Mayinger, Franz., 2000, “Measurement of heat transfer coefficients for direct contact
    condensation in core makeup tanks using holographic interferometer,” Nuclear Engineering and Design, Vol. 199, pp. 75-83.
    【3】 Brown, G., 1951, “Heat transmission by condensation of steam on a spray of water drops,” Inst. Mech. Engers. Proc. Discussion on Heat Transfer, pp.49-52.
    【4】 Brouwers H. J. H., 1992, “Film models for transport phenomena with fog formation: The fog film model,” Int. Heat and Mass Transfer, Vol. 35, pp. 13-28.
    【5】 Brouwers, H. J. H., Van Der Geld, and C. W. M., 1996, “Heat transfer, condensation and fog formation in crossflow plastic heat exchangers,” Int. J. Heat and Mass Transfer, Vol. 39, pp. 391-405.
    【6】Rose, J. W., 2001, “Dropwise condensation theory and experiment: A Review,” Imeche. J. Power and Energy, Vol. 216. pp. 115-127.
    【7】 Wodruff, D. W. and Westwater, J.W., 1981, “Steam condensation on various gold surfaces,” J. Heat Transfer,” Vol. 103, pp. 685-692
    【8】 O’Nell, G. A. and Westwater, J. W. 1984, “Dropwise condensation of
    steam on electroplated silver surfaces,” Int. J. Heat and Mass Transfer, Vol. 27,
    pp. 1539-1549.
    【9】 Nash, C. A. and Westwater, J. W., 1987, “A study of novel surfaces for dropwise condensation,” Proc. ASME-JSME Thermal Eng. Conf. Honolulu, 2, pp. 485-491.
    【10】 Nusselt, W., 1916, “Die oberflachenkondensation des wasserdampfes,” Zeitschr. Ver Deutsch. Ing. 60, pp. 541-569.
    【11】 Gregorig, R., Kern, J. and Turek, 1974, ”Improved correlation of film condensation data based on or more rigorous application of similarity parameters,” Warme-und Stoffubertragung, Vol.7, pp.1-13.
    【12】 Rohsenow, W. M., 1956, “Heat transfer and temperature distribution in laminar-film condensation,” Trans. ASME, Vol. 78, pp. 1645-1648.
    【13】 Sparrow, E. M. and Gregg, J.L., 1959, “A boundary-layer treatment of laminar film condensation,” Trans. ASME, J. Heat Transfer, Vol.81, pp.13-18.
    【14】 Chen, M. M., 1961, “An analytical study of laminar film condensation: part 1-flat plates,” Trans. ASME, J. Heat Transfer, Vol.83, pp.48-54.
    【15】 Koh, J. C. Y., 1961, “An integral treatment of two-phase boundary layer in film condensation,” Trans. ASME, J. Heat Transfer, Vol.83, pp.359-362.
    【16】Sugawara, S., Michiyoshi, I. and Minamiyama, T., 1956, “The condensation of vapour flowing normal to a horizontal pipe,” Proc. 6th Jap. Nat. Cong. App. Mech, Paper 3-4, pp.385.
    【17】 Le Fevre, E. J. and Mandelsweig, S. I., 1960, “The effect of vertically downward velocity on the heat transfer from stream-nitrogen mixtures condensing on a horizontal cylinder,” MSc Thesis, Univ. London.
    【18】 Mayhew, Y. R. and Aggarwal, J. K., 1973, “Laminar film condensation with vapour drag on a flat surface,” Int. J. Heat Mass Transfer, Vol.16, pp.1944-1949.
    【19】 Nicol, A. A. and Wallace, D. J., 1974, “The influence of vapour shear force on condensation on a cylinder,” Inst. Chem. Eng. Symp., Ser.38, p.1
    【20】 Nobbs, D. W., 1975, “The effect of downward vapour velocity and inundation on the condensation rates on horizontal tube banks,” PhD Thesis Univ. of Bristol, U.K.
    【21】 Asano, K., Nakano, Y. and Inaba, M., 1979, “Forced convection film condensation of vapours in the presence of noncondensable gas on a small vertical fiat plate,” J. Chem. Eng. Jpn., Vol.12, No.3, pp.196.
    【22】 South, V. and Denny, V. E., 1972, “The vapor shear boundary condition for laminar film condensation,” Trans. ASME. J. Heat Transfer., Vol.94, pp.248-249.
    【23】 Cess, R. D., 1960, “Laminar-film condensation on a flat plate in the absence of a body force,” Zeitschrift fur Angewandte und Physik, Vol.11, pp.426-433.
    【24】 Koh, J. C. Y., 1962, “Film condensation in a forced convection boundary layer flow,” Int. J. Heat Mass Transfer, Vol.5, pp.941-954.
    【25】 Shekriladze, I. G. and Gomelauri, V. I., 1966, “Theoretical study of laminar film condensation of a flowing vapour,” Int. J. Heat Mass Transfer, Vol.9, pp.581-591.
    【26】 Denny, V. E. and Mills, A. F., 1969, “Laminar film condensation of a flowing vapor on a horizontal cylinder at normal gravity,” Trans. ASME J. Heat Transfer, Vol.91, pp.495.
    【27】 Jacobs, H. R., 1966, “An integral treatment of combined body force and forced convection in laminar film condensation,” Int. J. Heat Mass Transfer, Vol.9, pp.637-648.
    【28】 Fujii, T. and Uehara, H., 1972, “Laminar film condensation on a vertical surface,” Int. J. Heat Mass Transfer,” Vol.15, pp.217-233.
    【29】 Gaddis, E. S., 1979, “Solution of the two phase boundary layer equations for laminar film condensation of vapour flowing perpendicular to a horizontal cylinder,” Int. J. Heat Mass Transfer, Vol.22, pp.371.
    【30】 Fujii, T., Honda, H. and Oda, K., 1979, “Condensation of steam on a horizontal tube-the influence of on coming velocity and thermal condition at the tube wall,” Condensation Heat Transfer, Proc. 18th Nat. Heat Transfer. Conf. ASME, pp.35-43.
    【31】 Lee, W. C. and Rose, J. W., 1982, “Film condensation on a horizontal tube-effect of vapour velocity,” Proc. 7th , Int. Heat Transfer Conf., Munich, Vol.5, pp.101-106.
    【32】Truckenbrodt, E., 1956, “Ein einfaches naherungsverfahrenzum berechnen der laminaren riebungsicht mit absangung,” Forschung Ing.
    【33】 Wang, C. C. and Chen, C. K., 2002, “Combined free and forced convection film condensation on a finite-size horizontal wavy plate,”ASME J. Heat Transfer, Vol. 124, pp. 573-576.
    【34】 Yang, S. A. and Chen, C. K., 1993, “Laminar film condensation on a horizontal elliptical tube with iniform surface heat flux and suction at the porous wall,” J. of the Chinese Society of Mechanical Engineers, Vol. 14, No. 1, pp. 93-100.
    【35】 Yang, S. A. and Chen, C. K., 1994, “Filmwise condensation on a horizontal elliptical tube embedded in porous media,”Chemical Engineering
    Communications, Vol. 127, pp. 125-135.
    【36】 Yang, S. A. and Chen, C. K., 1997, “Filmwise condensation on a vertical porous ellipsoid with uniform suction velocity,”Chemical Engineering Communications, Vol. 160, pp. 123-135.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE