研究生: |
王郁翔 Wang, Yu-Hsiang |
---|---|
論文名稱: |
應用雷射誘導擊穿光譜探討物鏡鑽孔之碳化矽電漿溫度研究 Study of SiC Plasma Temperature in Objective Lens Drilling by Laser-Induced Breakdown Spectroscopy |
指導教授: |
洪嘉宏
Hung, Chia-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 67 |
中文關鍵詞: | 雷射鑽孔 、碳化矽 、奈秒雷射 、等離子體溫度 、雷射誘導擊穿光譜 、聚焦鏡 |
外文關鍵詞: | laser drilling, silicon carbide, nanosecond laser, plasma temperature, laser induced breakdown spectroscopy(LIBS), objective lens |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中使用奈秒脈衝雷射結合聚焦鏡對單晶的n-type 4H-SiC進行雷射鑽孔,目的為實現10 μm以下並且深寬比大於10的孔徑。使用聚焦鏡的原因為達到更小的光斑尺寸,小的光斑尺寸不僅能讓雷射能量密度更大使雷射能量更集中,也更容易達到較小的孔徑。奈秒雷射在目前工業界已經行之有年,和皮秒以及飛秒雷射相比之下,飛秒和皮秒雷射可以大大的減少熱影響區以及提高材料的加工精度,但相對其設備的維護和保養成本也比較高,若能使用奈秒雷射達到高精度的鑽孔效果,可以大幅的降低成本。本研究透過參數優化的方式降低頻率、增加脈充數(鑽孔時間)以及峰值功率,最後以0.03 mJ的脈衝能量,頻率2 kHz,脈衝寬度30 ns,鑽孔時間2 s鑽出深度小於10 μm深寬比大約13的孔,並且使用氬氣輔助鑽孔降低了孔中的氧含量至9 %。
另外本研究使用光譜儀在雷射鑽孔時進行監測,發現大部分為矽的發射譜峰,因此決定以矽離子來做Saha Boltzmann plot,將偵測到的譜峰對比了NIST LIBS Database以及Atomic spectra database來確定那些發射譜峰屬於矽離子的哪種型態,以及那些矽離子對應的相關參數Aki(1/s)、Ek(ev)、g。最終在0.14 mJ頻率2 kHz脈衝寬度30 ns情況下偵測到的等離子體溫度約170000 K,這歸因於雷射的極小光斑以及短脈衝低頻率,和文獻比較本研究的峰值功率密度和能量密度都高出許多,並且在訊號光譜中發現了Si III的離子,這顯少出現在文獻LIBS實驗中,說明本研究的溫度確實能達到170000 K。
本研究也發現在使用相同脈衝能量下提高頻率的過程中,發現等離子體的溫度也會逐漸下降,在脈衝寬度30和50 ns中,頻率在大約9和3 kHZ開始下降,這歸因於過高的頻率會導致下一發脈衝會被上一發脈衝產生的等離子體或熔融微粒及蒸汽屏蔽導致能量消散無法有效傳入至孔洞內部。而相同頻率脈衝能量下降低脈衝寬度提高峰值功率會使溫度提高,但在提升功率使不同脈寬達到相同峰值功率時,只有30和50 ns的溫度接近,120和200 ns的還是低了許多,這說明這兩個脈衝寬度的最佳頻率遠低於2 kHz。
In this study, nanosecond pulsed laser drilling combined with a focusing objective was applied to single crystal n type 4H-SiC to fabricate holes with diameters below 10 µm and aspect ratios greater than 10. The focusing lens produced a smaller spot size, increasing laser fluence and facilitating smaller apertures. Picosecond and femtosecond lasers can lessen the heat affected zone and improve machining precision, but their equipment and maintenance costs are relatively high; demonstrating high precision drilling with a nanosecond laser therefore offers a cost effective alternative. By lowering the repetition rate, extending the drilling time, and increasing the peak power could achieved holes less than 10µm deep with an aspect ratio of about 13 using a pulse energy of 0.03 mJ, a repetition rate of 2 kHz, a pulse width of 30 ns, and a drilling duration of 2 s. Argon assist further reduced the oxygen content inside the holes to 9 %.
Spectroscopic monitoring during drilling showed that most emission lines originated from silicon, so a Saha Boltzmann plot based on silicon ions was constructed. High resolution spectrometers collected spectra in two calibrated wavelength bands, which were matched to the NIST LIBS Database and the Atomic Spectra Database to identify ionic species and their parameters Aki, Ek, and g. With a pulse energy of 0.14 mJ, a repetition rate of 2 kHz, and a pulse width of 30 ns, the plasma temperature reached about 170000 K. This very high temperature is attributed to the extremely small spot and high peak fluence, and is supported by the appearance of Si III lines, rarely reported in LIBS experiments.
Raising the repetition rate at constant pulse energy caused a gradual decrease in plasma temperature. For pulse widths of 30 ns and 5 ns, the temperature began to drop at roughly 9 kHz and 3 kHz, respectively, due to plasma, molten droplets, and vapor from earlier pulses shielding later pulses and dissipating energy before it reached the hole interior. Reducing the pulse width at a fixed repetition rate increased the temperature by raising the peak power, but equalizing the peak power across different pulse widths yielded similar temperatures only for 30 ns and 50 ns; temperatures for 120 ns and 200 ns remained much lower, indicating that their optimal repetition rates are well below 2 kHz.
[1] N. B. Dahotre and S. P. Harmika, Laser Fabrication and Machining of Materials. New York, NY, USA: Springer, 2008.
[2] I. P. Tuersley, T. P. Hoult, and I. R. Pashby, “Nd–YAG laser machining of SiC fibre/borosilicate glass composites. Part I. Optimisation of laser pulse parameters,” Compos. Part A Appl. Sci. Manuf., vol. 29, no. 8, pp. 947–954, 1998.
[3] Z. Y. Zhai, W. J. Wang, X. S. Mei, M. Li, J. L. Cui, F. C. Wang, and A. F. Pan, “Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites,” Opt. Commun., vol. 424, pp. 137–144, 2018.
[4] A. N. Samant and N. B. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc., vol. 29, no. 6, pp. 969–993, 2009.
[5] Z. Zhang et al., “Dual laser beam asynchronous dicing of 4H-SiC wafer,” Micromachines, vol. 12, no. 11, p. 1331, 2021.
[6] N. Watanabe, T. Kimoto, and J. Suda, “Temperature dependence of optical absorption coefficient of 4H- and 6H-SiC from room temperature to 300 °C,” Jpn. J. Appl. Phys., vol. 53, Art. no. 108003, 2014.
[7] B. Adelmann and R. Hellmann, “SiC absorption of near-infrared laser radiation at high temperatures,” Appl. Phys. A, vol. 122, Art. no. 642, 2016.
[8] D. Ashkenasi and A. Rosenfeld, “Processing of multi-layer systems using femtosecond, picosecond, and nanosecond laser pulses at different wavelengths,” in Photon Processing in Microelectronics and Photonics, Proc. SPIE, vol. 4637, pp. 169–176, 2002.
[9] T. V. Kononenko et al., “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron., vol. 29, no. 8, pp. 724–728, 1999.
[10] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A, vol. 63, pp. 109–115, 1996.
[11] A. Kr. Dubey and V. Yadava, “Experimental study of Nd:YAG laser beam machining—An overview,” J. Mater. Process. Technol., vol. 195, pp. 15–26, 2008.
[12] J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys., vol. 41, pp. 3656–3663, 1970.
[13] S. T. Hendow and S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express, vol. 18, no. 10, pp. 10188–10202, 2010.
[14] B. Kim, R. Iida, S. Kiyokawa, and K. Fushinobu, “Effect of beam profile on nanosecond laser drilling of 4H-SiC,” J. Laser Appl., vol. 30, Art. no. 032207, 2018.
[15] B. Kim, R. Iida, D. H. Doan, and K. Fushinobu, “Mechanism of nanosecond laser drilling process of 4H-SiC for through substrate vias,” Appl. Phys. A, vol. 123, Art. no. 392, 2017.
[16] H.-J. Wang, T. Yang, X.-X. Wu, and F.-Q. Deng, “Hole taper control in femtosecond pulsed laser drilling of silicon carbide ceramic,” J. Phys.: Conf. Ser., vol. 2285, Art. no. 012039, 2022.
[17] E. Kacar, M. Mutlu, E. Akman, A. Demir, L. Candan, T. Canel, V. Gunay, and T. Sinmazcelik, “Characterization of the drilling alumina ceramic using Nd:YAG pulsed laser,” J. Mater. Process. Technol., vol. 209, pp. 2008–2014, 2009.
[18] S. Bandyopadhyay, J. K. Sarin Sundar, G. Sundararajan, and S. V. Joshi, “Geometrical features and metallurgical characteristics of Nd:YAG laser drilled holes in thick IN718 and Ti–6Al–4V sheets,” J. Mater. Process. Technol., vol. 127, pp. 83–95, 2002.
[19] Q. Chen, H.-J. Wang, D.-T. Lin, F. Zuo, Z.-X. Zhao, and H.-T. Lin, “Characterization of hole taper in laser drilling of silicon nitride ceramic under water,” Ceram. Int., vol. 44, pp. 13449–13452, 2018.
[20] P. Laakso, R. Penttilä, and P. Heimala, “Effect of shot number on femtosecond laser drilling of silicon,” J. Laser Micro/Nanoeng., vol. 5, no. 3, pp. 273–276, 2010.
[21] P. Balage, M. Lafargue, T. Guilberteau, G. Bonamis, C. Hönninger, J. Lopez, and I. Manek-Hönninger, “Femtosecond laser percussion drilling of silicon using repetitive single pulse, MHz-, and GHz-burst regimes,” Micromachines, vol. 15, no. 5, Art. no. 632, 2024.
[22] H. Wang, H. Lin, C. Wang, L. Zheng, and X. Hu, “Laser drilling of structural ceramics—A review,” J. Eur. Ceram. Soc., vol. 37, no. 6, pp. 1157–1173, 2017.
[23] D.-R. Sun, G. Wang, Y. Li, Y. Yu, C. Shen, Y. Wang, and Z. Lu, “Laser drilling in silicon carbide and silicon carbide matrix composites,” Opt. Laser Technol., vol. 170, Art. no. 110166, 2024.
[24] X. Jia, Y. Chen, L. Liu, C. Wang, and J. Duan, “Advances in laser drilling of structural ceramics,” Nanomaterials, vol. 12, Art. no. 230, 2022.
[25] P. Molian, B. Pecholt, and S. Gupta, “Picosecond pulsed laser ablation and micromachining of 4H-SiC wafers,” Appl. Surf. Sci., vol. 255, no. 10, pp. 4515–4520, 2009.
[26] F. Anabitarte, A. Cobo, and J. M. López-Higuera, “Laser-induced breakdown spectroscopy: Fundamentals, applications, and challenges,” ISRN Spectrosc., vol. 2012, Art. no. 285240, 12 pp., 2012.
[27] S. K. H. Shah, J. Iqbal, P. Ahmad, M. U. Khandaker, S. Haq, and M. Naeem, “Laser induced breakdown spectroscopy methods and applications: A comprehensive review,” Radiat. Phys. Chem., vol. 170, Art. no. 108666, 2020.
[28] V. N. Rai and S. N. Thakur, “Physics of plasma in laser-induced breakdown spectroscopy,” in Laser-Induced Breakdown Spectroscopy, Amsterdam, The Netherlands: Elsevier, 2007, ch. 4, pp. 83–116.
[29] Y. Chen, Y. Jiang, J. Han, A. Chen, and M. Jin, “Sensitivity, precision, and accuracy of fs-LIBS for heavy metal detection in flowing aqueous solutions,” Opt. Lett., vol. 49, no. 11, pp. 3106–3109, 2024.
[30] Y. Gu, Z. Chen, H. Chen, and F. Nian, “Quantitative analysis of steel alloy elements based on LIBS and deep learning of multi-perspective features,” Electronics, vol. 12, Art. no. 2566, 2023.
[31] R. C. Wiens et al., “The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests,” Space Sci. Rev., vol. 170, pp. 167–227, 2012.
[32] J. A. Aguilera and C. Aragón, “Multi-element Saha–Boltzmann and Boltzmann plots in laser-induced plasmas,” Spectrochim. Acta, Part B, vol. 62, pp. 378–385, 2007.
[33] W. Zhou et al., “Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma,” J. Anal. At. Spectrom., vol. 28, pp. 702–710, 2013.
[34] Y. Tian et al., “Temperature determination of laser-induced plasma in water,” Plasma Sources Sci. Technol., vol. 34, Art. no. 025012, 2025.
[35] A. Ancona et al., “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express, vol. 16, no. 12, pp. 8958–8967, 2008.
[36] J. Linden, S. Cohen, Y. Berg, Z. Kotler, and Z. Zalevsky, “Influence of nanosecond pulse bursts at high repetition rates on ablation process,” J. Laser Micro/Nanoeng., vol. 16, no. 1, Art. no. 2003, 2021.
[37] J. Riedel, J. Hufgard, and Y. You, “LIBS at high duty-cycles: Effect of repetition rate and temporal width on the excitation laser pulses,” Front. Phys., vol. 11, Art. no. 1241533, 2023.
[38] L. Hribar, P. Gregorčič, M. Senegačnik, and M. Jezeršek, “The influence of the processing parameters on the laser-ablation of stainless steel and brass during the engraving by nanosecond fiber laser,” Nanomaterials, vol. 12, Art. no. 232, 2022.
[39] B. Liu et al., “Fabrication of 4H-SiC microvias using a femtosecond laser assisted by a protective layer,” Opt. Mater., vol. 123, Art. no. 111695, 2022.
[40] L. M. Wee, L. E. Khoong, C. W. Tan, and G. C. Lim, “Solvent-assisted laser drilling of silicon carbide,” Int. J. Appl. Ceram. Technol., vol. 8, no. 6, pp. 1263–1276, 2011.
[41] H.-J. Wang, T. Yang, X.-X. Wu, and F.-Q. Deng, “Hole taper control in femtosecond pulsed laser drilling of silicon carbide ceramic,” J. Phys.: Conf. Ser., vol. 2285, Art. no. 012039, 2022.
[42] D. Karnam et al., “Plasma mediated ns-laser erosion of SiC monitored using Raman spectroscopy and in-operando LIBS,” Surf. Interfaces, vol. 46, Art. no. 104062, 2024.
[43] A. M. El Sherbini and A. A. S. Al Aamer, “Measurement of plasma parameters in laser-induced breakdown spectroscopy using Si-lines,” World J. Nano Sci. Eng., vol. 2, pp. 206–212, 2012.
[44] H. D. Doan, N. Iwatani, and K. Fushinobu, “A study of near-infrared nanosecond laser ablation of silicon carbide,” Int. J. Heat Mass Transf., vol. 65, pp. 713–718, 2013.
[45] G. Galbács, V. Budavári, and Z. Geretovszky, “Multi-pulse laser-induced plasma spectroscopy using a single laser source and a compact spectrometer,” J. Anal. At. Spectrom., vol. 20, pp. 974–980, 2005.
[46] G. Galbács, N. Jedlinszki, K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “A Study of Ablation, Spatial, and Temporal Characteristics of Laser-Induced Plasmas Generated by Multiple Collinear Pulses,” Applied Spectroscopy, vol. 64, no. 2, pp. 161–172, 2010.
[47] A. P. Flores, A. K. Frias Sanchez, A. Villarreal, F. G. Rendón Sauz, L. Ponce Cabrera, and T. Flores Reyes, “The Potential of Compact LIBS System with Multi-Pulse Nd:YAG Laser for Bacteria Identification,” Journal of Biomedical Science and Engineering, vol. 8, pp. 207–212, 2015.
[48] H. Yuan, J. Hao, C. Zhu, Z. Dan, L. Zhou, J. Niu, S. Kang, J. Miao, and S. Zhang, “Development of laser-ablated aluminum plasma plume during the irradiation of laser pulse,” Journal of Laser Applications, vol. 36, Art. no. 012031, 2024.
[49] S. S. Harilal, “Influence of spot size on propagation dynamics of laser-produced tin plasma,” Journal of Applied Physics, vol. 102, Art. no. 123306, 2007.
[50] X. Li, W. Wei, J. Wu, S. Jia, and A. Qiu, “The influence of spot size on the expansion dynamics of nanosecond-laser-produced copper plasmas in atmosphere,” Journal of Applied Physics, vol. 113, Art. no. 243304, 2013.
[51] S. C. Singh, C. Fallon, P. Yeates, C. McLoughlin, and J. T. Costello, “Spot size dependent shock wave, plume and ion expansion dynamics of laser-produced YBCO plasma,” unpublished manuscript, National Centre for Plasma Science and Technology, Dublin City University, Dublin, Ireland, 2014.