| 研究生: |
劉杰蒝 Liu, Jie-Yuan |
|---|---|
| 論文名稱: |
地熱取熱系統之熱交換行為模擬-以知本地熱區為例 Simulation of Heat Exchange Method of Geothermal System In Zhiben Area |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | TOUGH2 、增強型地熱系統(EGS) 、閉迴路熱量收集系統(CEEG) 、知本地區 、熱交換井 |
| 外文關鍵詞: | TOUGH2, EGS, CEEG, Zhiben area, Heat well |
| 相關次數: | 點閱:51 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首先以 TOUGH2 數值模擬軟體建立與 Bu 等人(2012)與 Tian 等人(2018)所提出相同概念之同軸熱交換井模型,模擬地下水流與熱交換行為,並與 Bu 等人(2012)與 Tian 等人(2018)所模擬之結果進行比對驗證。其次針對增強型地熱系統(EGS)與閉迴路熱量收集系統(CEEG)進行敏感性分析及井群效應評估,探討各項參數改變對熱交換井之產出溫度變化與影響及地下熱場受井群影響範圍。最後,本研究選定台東知本地熱區作為研究區域,以 TOUGH2 建立知本研究區模型,根據地球物理探勘與監測井井溫等資料進行研究區模型之地溫率定,並設計不同 EGS 與 CEEG 之佈設方式進行情境分析,評估 EGS 與 CEEG 應用於知本研究區進行熱交換之效益及影響。
驗證結果顯示,上述同軸井概念模型驗證結果與 Tian 等人(2018)所設計之概念模型溫度趨勢相符合。其次改變井距、滲透率、熱傳導係數及注入流體速度等四項參數及不同井群設置對 EGS 與 CEEG 概念模型進行敏感性分析,依本研究所設定之模擬結果顯示:(1)以上四項參數之改變皆對最終產出溫度有顯著影響、(2)EGS 與 CEEG 雙井井距達到 30 m時井間影響減弱,溫度變化逐漸趨緩、(3)五點式佈井方式,EGS 單井注入井距達到 30 m時井間影響趨弱,EGS 單井產出與 CEEG 井距達到 40 m時井間影響趨弱、(4)其中因 EGS 與 CEEG 兩者運作原理不同,使改變熱傳導係數對 EGS 與 CEEG 之結果趨勢相反。最後以不同 EGS 與 CEEG 之佈設方式對知本研究區進行情境分析,模擬結果顯示,溫度降幅主要在於注水井或同軸井周圍,對整體溫度場無顯著影響,且於相同井數與總生產流速下,增強型地熱系統之產能相對於閉迴路熱量收集系統之產能較為良好。
This study is based on the conceptual model of coaxial well proposed by Bu’s model and Tian’s model. Then, we established a similar conceptual model of a coaxial well with TOUGH2 numerical model, and this model was compared and verified with Bu’s model and Tian's model. Secondly, sensitivity analysis and evaluation of well group effect are carried out for Enhanced Geothermal System (EGS) and Complex Energy Extraction from Geothermal resource (CEEG), the impact of changing parameters on the output temperature of production wells and the impact range of underground thermal fields by well group effect are discussed. Finally, the Zhiben geothermal area is selected as the research area, and the numerical model of the Zhiben area is established with TOUGH2. In addition, based on the data of geophysical exploration and monitoring well temperature, the geothermal temperature of this model is calibrated, and situational analysis is processed by different EGS and CEEG multi-well layouts. After that are evaluated the benefits and impact of the EGS and CEEG in the heat exchange of the Zhiben research area.
In a sensitivity analysis of the EGS and CEEG conceptual models, we varied the parameters of well distance, permeability, thermal conductivity, injection flow rate and different multi-well layout. In our cases, the simulation results indicate that: (1) The change of the above parameters has an obvious impact on the final production temperature. (2) When the distance between EGS and CEEG models of the two wells reaches 30m, the impact of the two wells will decrease, and the temperature change will gradually slow down. (3) In the Five-Spot Geothermal pattern, when the Injection well distance of EGS single well reaches 30m, and the impact between wells will decrease. In addition, when the single production well model of EGS and the coaxial well model of CEEG distance reach 40m, the impact between wells will also decrease. (4) Because of the difference between EGS and CEEG operating principles, changing the thermal conductivity leads to the opposite results for EGS and CEEG. Therefore, the situational analysis of the Zhiben research area is carried out with different multi-well layouts of the EGS and the CEEG, the result shows that the temperature drop is mainly around the injection wells or coaxial wells, which has no significant effect on the overall temperature field change. The productivity of EGS is better than CEEG at the same number of wells and total production flow rate.
1. Adrian, B., 1993, Heat transfer, Josh Wiley & Sons Inc., New York
2. Alan, C., Cinar, M., 2022, Interpretation of temperature transient data from coupled reservoir and wellbore model for single phase fluids, Journal of Petroleum Science and Engineering, vol.209, 109913
3. Bakar, H. A., Zarrouk, S. J., 2018, Transient pressure analysis of geothermal wells fractured during well testing, Geothermics, vol.76, pp.26–37
4. Bear, J., 1972, Dynamics of fluid in porous media, America Elseriver Pub. Co., New York
5. Bedre, M. G., Anderson, B. J., 2012, Sensitivity Analysis of Low-Temperature Geothermal Reservoirs: Effect of Reservoir Parameters on the Direct Use of Geothermal Energy, GRC Transactions, Vol. 36
6. Bu, X., Ma, W., Li, H., 2012, Geothermal energy production utilizing abandoned oil and gas wells, Renewable Energy, vol.41, pp.80-85
7. Bujakowski, W., Barbacki, A., Miecznik, M., Pajak, L., Skrzypczak, R., Sowizdzat, A., 2015, Modelling geothermal and operating parameters of EGS installations in the lower triassic sedimentary formations of the central Poland area, Renewable Energy, vol.80, pp. 441-453
8. Chen, T., Liu, G., Liao, S., 2018, A comparison study of reservoir boundary conditions of Enhanced Geothermal System (EGS), 2nd International Conference on Energy and Power, ICEP2018
9. Davis, A. P., Michaelides, E. E., 2009, Geothermal power production from abandoned oil wells, Energy, vol.34, pp.866-872
10. Edwards, A. L., 1972, TRUMP: A computer program for transient and steady state temperature distributions in multidimensional systems, National Technical Information Service, National Bureau of Standards, Springfield, VA.
11. Fox, D. B., Sutter, D., Beckers, K. F., Lukawski, M. Z., Koch, D. L., Amderson, B. J., Tester, J. W., 2013, Sustainable heat farming: Modeling extraction and recovery in discretely fractured geothermal reservoirs, Geothermics, vol.46, pp.42-54
12. Fox, D. B., Koch, D. L., Tester, J. W., 2016, An analytical thermohydraulic model for discretely fractured geothermal reservoirs, Water Resources Research, vol.52, issue 9, pp.6792-6817
13. Frind, E. O., 1982, “Simulation of long-term transient density-dependent transport in groundwater.”, Adv. Water Resources, vol. 5, issue 2, pp.73-88
14. Gallup, D. L., 2009, Production engineering in geothermal technology: a review, Geothermics, vol.38, issue 3, pp.326-334
15. Heller, K., Teodoriu, C., Falcone, G., 2014, A New Deep Geothermal Concept Based on the Geyser Principle, PROCEEDINGS, Thirty-Ninth Workshop on Geothermal Reservoir Engineering
16. Huttrer, G. W., 2021, Geothermal Power Generation in the World 2015-2020 Update Report, Proceedings World Geothermal Congress 2020+1
17. Jiang, K., Bu, X., 2022, Simulation analysis of a single well geothermal system with open-loop structure, Geothermics, vol.100, 102338
18. Kana, J. D., Djongyang, N., Raïdandi, D., Nouck, P. N., Dadjé, N., 2015, A review of geophysical methods for geothermal exploration, Renewable and Sustainable Energy Reviews, vol.44, pp. 87–95
19. Kaya, E., Zarrouk, S. J., O’Sullivan, M. J., 2011, Reinjection in geothermal fields: A review of worldwide experience, Renewable and Sustainable Energy Reviews, vol.15, pp.47-68
20. Kim, E. J., Roux, J. J., Rusaouen, G., Kuznik, F., 2010, Numerical modeling of geothermal vertical heat exchangers for the short time analysis using the state model size reduction technique, Applied Thermal Engineering, vol.30, issue 6-7, pp.706-714
21. Kurnia, J. C., Shatri, M. S., Putra, Z. A., Zaini, J., Caesarendra, W., Sasmito, A. P., 2021, Geothermal energy extraction using abandoned oil and gas wells: Techno-economic and policy review, Energy Research, vol.46, issue 1, pp.28-60
22. Li, S., Feng, X. T., Zhang, D., Tang, H., 2019, Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs, Applied Energy, vol.247, pp. 40-59
23. Llanos, E. M., Zarrouk, S. J., Hogarth, R. A., 2015, Numerical model of the Habanero geothermal reservoir, Australia, Geothermics, vol.53, pp.308-319
24. Majorowicz, J., Moore, M., 2012, Geothermal energy potential in the St-Lawrence River area, Québec, Geothermics, vol.43, pp.25-36
25. Okoroafor, E. R., Co, C., Horne, R. N., 2022, Numerical investigation of the impact of fracture aperture anisotropy on EGS thermal performance, Geothermics, vol.100, 102354
26. Oldenburg, C., Pan, L., Mark, P. M., Muir, M., Eastman, A., Higgins, B., 2016, Numerical Simulation of Critical Factors Controlling Heat Extraction from Geothermal Systems Using a Closed-Loop Heat Exchange Method, 41st Workshop on Geothermal Reservoir Engineering
27. O’Sullivan, M. J., Press, K., Lippmann, M. J., 2001, State of the art of geothermal reservoir simulation, Geothermics, vol.30, issue 4, pp.295-429
28. Pruess K., Oldenburg C., Moridis G., 1999, TOUGH2 User’s Guide Version 2.0
29. Riahi, A., Moncarz, P., Kolbe, W., Damjanac, B., 2017, Innovative Closed-Loop Geothermal Well Designs Using Water and Super Critical Carbon Dioxide as Working Fluids, Proceedings, 42nd Workshop on Geothermal Reservoir Engineering
30. Sarak, H., Onur, M., Satman, A., 2005, Lumped- parameter models for low-temperature geothermal fields and their application, Geothermics, vol.34, pp.728–755
31. Sharma, P., Al Saedi, A. Q., Kabir, C. S., 2020, Geothermal energy extraction with wellbore heat exchanger: Analytical model and parameter evaluation to optimize heat recovery, Renewable Energy, vol.166, pp.1-8
32. Song, X., Lv, Z., Li, G., Hu, X., Shi, Y., 2017, Numerical analysis on the impact of the flow field of hydrothermal jet drilling for geothermal wells in a confined cooling environment, Geothermics, vol.66, pp.39-49
33. The EGS Collab Team, 2021, Modeling heat transport processes in enhanced geothermal systems: A validation study from EGS Collab Experiment 1, Geothermics, vol.97, 102254
34. Tian, X., Liu C. and Li, K., 2018, Modeling of Geothermal Power Generation from Abandoned Oil Wells Using In-situ combustion Technology, PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering
35. Wang, G., Song, X., Shi, Y., Yang, R., Yulong, F., Zheng, R., Li, J., 2021, Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system, Renewable Energy, vol.163, pp.974-986
36. Wang, G., Song, X., Yu, C., Shi, Y., Song, G., Xu, F., Ji, J., Song, Z., 2022, Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well, Energy, vol.242, 122527
37. Zhang, J., Zhao, M., Wang, G., Ma, P., 2022, Evaluation of heat extraction performance of multi-well injection enhanced geothermal system, Applied Thermal Engineering, vol.201, 117808
38. Zhu, Y., Li, K., Liu, C., Mgijimi, M. B., 2019, Geothermal Power Production from Abandoned Oil Reservoirs Using in Situ Combustion Technology, Energies 2019, 12, 4476
39. 工研院能資所,1993,礁溪溫泉地區地球物理及鑽井探勘資料報告
40. 工研院能資所,2001,台灣溫泉水資源之調查及開發利用(2/4),經濟部水利署
41. 工研院能資所,2002,台灣溫泉水資源之調查及開發利用(3/4),經濟部水利署
42. 工研院能礦所,1975,台灣地熱資源探勘工作報告之一,礦業研究所第 146 號報告
43. 工研院能礦所,1977,台灣地熱資源探勘工作報告之二,礦業研究所第 163 號報告
44. 工研院能礦所,1978,台灣地熱資源探勘工作報告之三,礦業研究所第 170 號報告
45. 工研院能礦所,1979,台灣地熱資源探勘工作報告之四,礦業研究所第 174 號報告
46. 工研院能礦所,1980,台灣地熱資源探勘工作報告之五,礦業研究所第 181 號報告
47. 工業技術研究院,2013,深層地熱發電技術研發計畫,年度計畫102年1月1日至102年12月31日,研究機構能源科技專案102年度執行報告
48. 工業技術研究院,2017,高效能地熱發電技術研發計畫(2/3),年度計畫106年1月1日至106年12月31日,研究機構能源科技專案106年度執行報告
49. 工業技術研究院,2018,高效能地熱發電技術研發計畫(3/3),年度計畫107年1月1日至107年12月31日,研究機構能源科技專案107年度執行報告
50. 工業技術研究院,2019,地熱發電整合推動與技術研發計畫(1/3),年度計畫108年1月1日至108年12月31日,研究機構能源科技專案108年度執行報告
51. 江協堂,2010,台灣東北部宜蘭平原及龜山島之地熱研究,國立台灣大學海洋研究所博士論文
52. 宋聖榮,2003,利用二氧化矽溫度計研究台灣地區熱流量變化(II)-台灣南部
53. 宋聖榮,2011,台灣地熱能源發展的現況、展望與困境,檢自http://www.gcc.ntu.edu.tw/files/archive/36_4f5b6224.pdf
54. 宋聖榮、鄧屬予、羅偉、葉恩肇、王珮玲、劉佳玫,2018,宜蘭平原深層地熱探勘鑽井及地熱系統研究,地熱與天然氣水合物聯合成果發表,pp.1-97
55. 李和祥,2005,溫泉資源調查分析之研究-以四重溪與中崙溫泉為例,國立成功大學資源工程學系碩士論文
56. 李京霖,2006,陽明山馬槽地區溫泉資源調查分析之研究,國立成功大學資源工程學系碩士論文
57. 李振誥、林士哲、馬惠達、林宏奕,2003,金崙溫泉資源之調查分析,台灣水利,第 51 卷,第 3 期,pp.58-68
58. 李振誥、李京霖、龔文瑞,2007,陽明山馬槽地區溫泉資源調查分析之研究,台灣水利,第 55 卷,第 3 期,pp.46-53
59. 李振誥、徐國錦,2007,知本溪、金崙溪地下水資源調查評估(1/2)工作成果報告書,經濟部水利署水利規劃試驗所
60. 李振誥、陳尉平、龔文瑞、陳進發、林宏奕,2008,溫泉可開發量推估及其應用於烏來溫泉區,台灣水利,第 56 卷,第 1 期,pp.60-68
61. 李清瑞、韓吟龍、江道義,2012,清水地熱區儲集層參數研究及發電潛能評估,臺灣鑛業,第64卷,第1期,pp.9-17
62. 李毓仁、劉力維、柳志錫、郭泰融,2013,礦冶,中國礦冶工程學會會刊,第 57 卷,第 4 期,126-130頁
63. 李伯亨、淩璐璐、張可霓、王洋、郭泰融、柳志錫、歐陽湘,2013,宜蘭清水地熱儲集層數值模型與生產模擬研究,臺灣鑛業,第 65 卷,第 4 期,1-12頁
64. 李伯亨、柳志錫、劉力維、謝瑞青、郭泰融、王俊堯,2014,增強型地熱系統發展分析與探討,台灣能源期刊,第一卷,第三期,pp.325-348
65. 周家慧,2009,礁溪地區溫泉人工補注之研究,國立成功大學資源工程學系碩士論文
66. 林士哲,2003,金崙地區溫泉資源調查分析之研究,國立成功大學資源工程學系碩士論文
67. 林峰瑋,2006,知本溪流域地下水資源評估研究,國立成功大學資源工程學系碩士論文
68. 林宏奕、葉信富、徐國錦、李振誥,2012,台東地區知本溫泉潛勢評估之研究,臺灣鑛業,第 64 卷,第 4 期,19-27頁
69. 林坤達,2015,以數值模擬評估地熱潛能與溫泉資源變動趨勢-以四重溪地區為例,國立成功大學資源工程學系碩士論文
70. 林奎佑,2019,清水IC13地熱井相似產能測試模型之開發,國立台南大學機電系統工程研究所碩士論文
71. 郭瑋萍,2008,知本地區溫泉資源調查分析之研究,國立成功大學資源工程學系碩士論文
72. 郭泰融,2009,整合地球物理方法研究變質岩區地熱構造-以金崙地熱區為例,國立中央大學地球物理研究所博士論文
73. 英萬,2012,大地電磁影像加強了解地熱構造:宜蘭清水地熱案例,國立中央大學地球物理研究所碩士論文
74. 姜智文,2017,利用電性構造模型評估清水地熱區之發電潛能,鑛冶,中國鑛冶工程學會會刊,第61卷,第1期,pp.20-30
75. 高堂貴,2002,溫泉分布調查方法與可行性之研究,國立成功大學資源工程學系碩士論文
76. 陳肇夏,1982,地熱地質與探勘,貞觀出版社,115頁
77. 陳肇夏,1989,台灣的溫泉和地熱,地質,第九卷,第 2 期,327~340頁
78. 陳宏宇、劉佳玫,2013,臺灣地熱潛能之發展,臺灣能源期刊,第一卷,第一期,85-103頁
79. 陳睿邦,2019,閉環式同軸井配合數值模型探討知本地區地熱交換行為,國立成功大學資源工程學系碩士論文
80. 陳愷,2021,台東地區變質岩帶的地熱發展潛勢,國立台灣海洋大學地球科學研究所碩士論文
81. 徐漢倫,2006,大地電磁法探查台灣清水地熱區,國立中央大學地球物理研究所碩士論文
82. 張貽斐,2019,台灣東北部裂隙型地熱儲集層之數值模擬研究:以仁澤地熱為例,國立成功大學資源工程學系碩士論文
83. 莊雅芳,2008,溫泉可開發量推估及其應用,國立成功大學資源工程學系碩士論文
84. 曾衡之,2014,大屯火山群之地下三維模型及地熱發電潛能,國立台灣大學地質科學研究所碩士論文
85. 經濟部水利署,2009,溫泉資源潛勢評估與補注規劃
86. 經濟部水利署水規所,2007,知本溪、金崙溪流域地下資源調查評估報告,317頁
87. 經濟部水利署,2008,南區溫泉監測系統站址規劃設計,407頁
88. 經濟部水利署,2021,109年台灣溫泉監測年報
89. 經濟部能源局,2007,地熱發電技術開發推動計畫(1/1),九十五年度執行報告,經濟部能源科技研究發展計畫
90. 經濟部能源委員會,1984,臺灣區地熱資源探勘評估報告,385頁
91. 經濟部能源委員會,1994,台灣地熱探勘資料彙編
92. 裘子慶,2019,同軸取熱管用於地熱系統之研究,國立宜蘭大學機械與機電工程學系碩士論文
93. 劉佳玫、宋聖榮,2013,以地球化學方式估算臺灣溫泉區地熱儲集層溫度及模擬地熱流體之路徑,地質系研究計畫
94. 蕭名舜,2016,現地儲集層取熱模擬,國立台南大學機電系統工程研究所碩士論文
95. 盧乙嘉,2018,清水地熱區的熱源與流體演化,國立台灣大學地質科學研究所博士論文
96. 謝秉志、曾紹宇、魏柏丞、李伯亨、劉力維、蔣力為、韓吟龍,2021,地熱井抽注影響範圍研究:以台灣清水地熱礦區為例,台灣能源期刊,第八卷,第二期,pp.105-116