簡易檢索 / 詳目顯示

研究生: 張嘉芸
Jhang, Jia-Yun
論文名稱: 陽離子摻雜對無鉛鈣鈦礦太陽能電池之穩定性分析
Stability Analysis of Lead-Free Perovskite Solar Cells by Cation Doping
指導教授: 陳昭宇
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 89
中文關鍵詞: 無鉛鈣鈦礦太陽能電池穩定性陽離子摻雜二/三維混成
外文關鍵詞: Lead-free perovskite, Stability, HTM-free, 2D/3D, Tin-based perovskite
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦太陽能電池的光電轉換效率發展迅速,使再生能源的研究展露出一道曙光。尤其因應全球暖化的影響,無鉛鈣鈦礦的成長更是備受矚目,因此為了達到商業化生產,除了優異的光電轉換效率之外,還需考慮電池的長時間工作穩定性,因此本篇論文的研究動機為提升鈣鈦礦太陽能電池的穩定性。
    本篇論文的研究主要探討摻雜不同比例的有機材料HAI (n-Hexylammonium iodide)對於其合成的鈣鈦礦太陽能電池元件長時間穩定性的影響。鈣鈦礦吸光層的製備是藉由溶液工程(solution engineering)將FAI (Formamidinium iodide)、HAI、SnI2、SnF2混合旋塗,再使用反溶劑(Chlorobenzene)沖刷基板,形成緻密薄膜,調變滴定時間、退火溫度以及旋轉速度得到優化後的鈣鈦礦薄膜。添加微量的 EDAI2和摻雜HAI 則有助於晶體的成核以及成長,減少缺陷以及漏電流的產生。利用吸收圖譜(UV-vis)、受激螢光放光(Photoluminescence)以及 GIWAXS (Grazing-Incidence Wide-Angle X-ray Scattering)等光學儀器分析摻雜HAI 後形成的鈣鈦礦薄膜對元件結構以及光學性質的變化。

    The emerging lead-Free perovskite has attracted enormous attention due to its eco-friendly nature. Among the lead-free perovskites, tin-based perovskite has lots of excellent optoelectronic properties, such as appropriate band gap of 1.41 eV, high absorption coefficient (105 cm-1), long carrier length (500 nm) and so on. However, the easy oxidation of Sn2+ to Sn4+ in tin-based perovskite will create vancancy which alter the electronic properties of tin-based perovskite. As a result, the oxidation reaction is a key issue for stabilizing the tin-based perovskite and the device performance. In this study, we codope HAI and EDAI2 in FASnI3 perovskite to stabilize the perovskite film as well as device stability. The device performance is optimized at a precursor ration HAI:FAI=3:97 with a doping level of 10% EDAI2 to attain a power conversion efficiency (PCE) of 5.17%. The device works stably on different temperature at 80C, 100C, and 120C for 12hr in a globe box. Additionally, the device without encapsulation displayed can survive for 9 hr in air. Doping cation in tin-based perovskite paves the way for stable tin-based perovskite solar cells. The new material is doped in lead-free perovskite to help promotion of the efficiency and stability.

    摘要 I Extended Abstract II 致謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 1 1.1 前言 1 1.2 太陽能電池之歷史演進 2 1.2.1 第一代太陽能電池 3 1.2.2 第二代太陽能電池 3 1.2.3 第三代太陽能電池 4 1.2.4 鈣鈦礦太陽能電池的興起 6 1.3 太陽能電池之工作原理 15 1.3.1 半導體的能帶 15 1.3.2 PN接面 18 1.3.3 太陽光對太陽能電池之影響 21 1.3.4 太陽能電池之量測參數 23 1.4 研究動機 26 第二章 27 2.1 有機無機混成鈣鈦礦 27 2.1.1 多元混成鈣鈦礦 27 2.1.2 低維度鈣鈦礦太陽能電池 28 2.2 鉛錫鈣鈦礦太陽能電池 33 2.3錫基無鉛鈣鈦礦太陽能電池 34 2.3.1 三維(3D)錫基鈣鈦礦 34 2.3.2 多元混成錫基鈣鈦礦 38 2.4 錫基無鉛鈣鈦礦歷年文獻總整理 43 2.5 FASnI3鈣鈦礦薄膜合成方法整理 44 第三章 45 3.1 實驗儀器與藥品 45 3.2 實驗流程 47 3.3 鈣鈦礦電池元件製作 48 3.3.1基板製備 48 3.3.2 阻擋層/緻密層(compact layer TiO2)製備 48 3.3.3 TiO2多孔層 48 3.3.4 單步驟旋塗法搭配溶劑工程(solution engineering)沉積鈣鈦礦 49 3.3.5 電極製備 49 3.4 樣品分析 50 3.4.1 I-V 特性曲線量測分析 50 3.4.2 量子轉換效率 (Incident photon-to-electron conversion efficiency; IPCE) 50 3.4.3 吸收光譜 (UV-vis Spectrum) 51 3.4.4 光致螢光激發 (Photoluminescence, PL) 51 3.4.5 時間解析螢光光譜 (Time-Resolved Photoluminescence Spectrum, TRPL) 52 3.4.6 掃描式電子顯微鏡 (Scanning Electron Microscopic, SEM) 52 3.4.7 X光繞射分析 (X-Ray Diffration, XRD) 53 3.4.8 傅立葉轉換紅外光光譜分析(Fourier Transform Infrared Spectrometer, FTIR) 54 3.4.9 低掠角大角度 X 光散射分析 (Grazing-Incidence Wide-Angle X-ray scattering, GIWAXS) 55 3.4.10 接觸角 (Contact Angle) 55 3.4.11 表面電位顯微鏡 (Kelvin Probe Force Microscope, KPFM) 57 第四章 58 4.1 FASnI3 鈣鈦礦 58 4.1.1 Spiro-OMeTAD對鈣鈦礦的影響 59 4.1.2 退火溫度對鈣鈦礦的影響 62 4.1.3 多孔TiO2濃度對鈣鈦礦的影響 63 4.2 添加劑EDAI2對鈣鈦礦的影響 65 4.3不同濃度的 HAI 對鈣鈦礦的影響 67 4.3.1 不同比例HAI 的薄膜分析: PL 67 4.3.2 不同比例HAI 的薄膜分析: GIWAXS 68 4.3.3 不同比例HAI 的薄膜分析: SEM 69 4.3.4 不同比例HAI 的薄膜分析: FTIR 70 4.3.5 不同比例HAI的薄膜分析: 接觸角 71 4.3.6 不同比例HAI 的薄膜分析: XRD 72 4.3.7 不同比例HAI 的薄膜分析: UV-vis 74 4.3.8 不同比例HAI的薄膜分析: TRPL 75 4.3.9 不同比例HAI 元件表現 76 4.4 穩定性測試 77 4.4.1 濕度穩定度分析 77 4.4.2 溫度穩定度分析 78 第五章 80 5.1 結論 80 5.2 未來展望 83 參考文獻 84

    1. NREL, "Best Research-Cell Efficiency Chart". 2019, NREL.
    2. Y. Ogomi, et al., "CH3NH3Sn x Pb (1–x) I3 Perovskite solar cells covering up to 1060 nm". The journal of physical chemistry letters, 2014. 5(6): p. 1004-1011.
    3. L. Liang, and P. Gao, "Lead‐Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too?" Advanced Science, 2018. 5(2): p. 1700331.
    4. Y. Liao, et al., "Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance". Journal of the American Chemical Society, 2017. 139(19): p. 6693-6699.
    5. S. Shao, et al., "Highly reproducible Sn‐based hybrid perovskite solar cells with 9% efficiency". Advanced Energy Materials, 2018. 8(4): p. 1702019.
    6. E. Jokar, et al., "Robust Tin‐Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%". Advanced Materials, 2019. 31(2): p. 1804835.
    7. C.S. Pedersen, "The UN sustainable development goals (SDGs) are a great gift to business!" Procedia CIRP, 2018. 69: p. 21-24.
    8. L. El Chaar, and N. El Zein, "Review of photovoltaic technologies". Renewable and sustainable energy reviews, 2011. 15(5): p. 2165-2175.
    9. J. Chandrasekaran, et al., "Hybrid solar cell based on blending of organic and inorganic materials—An overview". Renewable and Sustainable Energy Reviews, 2011. 15(2): p. 1228-1238.
    10. R.S. Ohl, "Light-sensitive electric device". 1946, Google Patents.
    11. S. Wenham and M. Green, "Silicon solar cells". Progress in Photovoltaics: Research and Applications, 1996. 4(1): p. 3-33.
    12. K. Masuko, et al., "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell". IEEE Journal of Photovoltaics, 2014. 4(6): p. 1433-1435.
    13. W. Deng, et al., "20.8% PERC solar cell on 156 mm× 156 mm P-type multicrystalline silicon substrate". IEEE Journal of Photovoltaics, 2015. 6(1): p. 3-9.
    14. M.J. Powell, "The physics of amorphous-silicon thin-film transistors". IEEE Transactions on Electron Devices, 1989. 36(12): p. 2753-2763.
    15. J. Yang, et al. "Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution". in Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC). 1994. IEEE.
    16. B. Kayes, et al., "Presented in part at the 37th IEEE Photovoltaic Specialists Conference". Seattle, WA, 2011.
    17. T.T. Pham, et al., "Novel Design of Primary Optical Elements Based on a Linear Fresnel Lens for Concentrator Photovoltaic Technology". Energies, 2019. 12(7): p. 1209.
    18. M.A. Green, et al., "Solar cell efficiency tables (Version 45)". Progress in photovoltaics: research and applications, 2015. 23(1): p. 1-9.
    19. E.R. Peglow, et al., "Flexible Solar Cells". 2017.
    20. S. Harrison, and M. Hayne, "Photoelectrolysis using type-II semiconductor heterojunctions". Scientific reports, 2017. 7(1): p. 11638.
    21. B. O'regan, and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films". nature, 1991. 353(6346): p. 737.
    22. C. Longo, and M.-A. De Paoli, "Dye-sensitized solar cells: a successful combination of materials". Journal of the Brazilian Chemical Society, 2003. 14(6): p. 898-901.
    23. S. Mathew, et al., "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers". Nature chemistry, 2014. 6(3): p. 242.
    24. J. Tsukamoto, et al., "A Schottky barrier type solar cell using polyacetylene". Japanese Journal of Applied Physics, 1981. 20(2): p. L127.
    25. A. Navrotsky and D.J. Weidner, "Perovskite: a structure of great interest to geophysics and materials science".Washington DC American Geophysical Union Geophysical Monograph Series, 1989. 45.
    26. A. Kojima, et al., "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells". Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
    27. P. Gao, et al., "Organohalide lead perovskites for photovoltaic applications". Energy & Environmental Science, 2014. 7(8): p. 2448-2463.
    28. J.M. Shaw and P.F. Seidler, "Organic electronics: introduction". IBM Journal of Research and Development, 2001. 45(1): p. 3-9.
    29. H.-S. Kim, et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%". Scientific reports, 2012. 2: p. 591.
    30. M.M. Lee, et al., "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites". Science, 2012. 338(6107): p. 643-647.
    31. L. Etgar, et al., "Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells". Journal of the American Chemical Society, 2012. 134(42): p. 17396-17399.
    32. J. Burschka, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells". Nature, 2013. 499(7458): p. 316.
    33. D. Liu, and T.L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques". Nature photonics, 2014. 8(2): p. 133.
    34. H. Zhou, et al., "Interface engineering of highly efficient perovskite solar cells". Science, 2014. 345(6196): p. 542-546.
    35. N.J. Jeon, et al., "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells". Nature materials, 2014. 13(9): p. 897.
    36. W.S. Yang, et al., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells". Science, 2017. 356(6345): p. 1376-1379.
    37. J. Svarc, Solar PV Cell Construction. 2018.
    38. S. Boudour, et al., "A study of CdTe solar cells using Ga-doped MgxZn1-xO buffer/TCO layers: Simulation and performance analysis". Journal of Science: Advanced Materials and Devices, 2019. 4(1): p. 111-115.
    39. J. Yue, et al., "Enhanced photovoltaic performances of the dye-sensitized solar cell by utilizing rare-earth modified tin oxide compact layer". 2017.
    40. F. Fu., et al., "High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration". Nature Energy, 2016. 2: p. 16190.
    41. S. Technology, https://www.halbleiter.org/en/fundamentals/conductors-insulators-semiconductors/.
    42. Nipun, "Difference Between p-type and n-type Semiconductor". 2015.
    43. HyperPhysics, http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dope.html.
    44. E. Totuorials, https://www.electronics-tutorials.ws/diode/diode_2.html.
    45. K. M. Gupta, et al., "Advanced Semiconducting Materials and Devices". 2015: p. 193-234.
    46. L.S.-M.J. Weickert, "Organic and Hybrid Solar Cells: An Introduction." 2016: p. 212-226.
    47. 光炎科技,太陽光模擬器基礎原理,https://www.enlitechnology.com/uploadfiles/402/product/SS-3A/Enli-Tech_一下就懂!太陽光模擬器原理簡介.pdf。
    48. N. Koide, et al., "Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit". Journal of Photochemistry and Photobiology A: chemistry, 2006. 182(3): p. 296-305.
    49. P.S. Priambodo, et al., "Electric energy management and engineering in solar cell system". Solar Cells–Res Appl Perspect, InTech, 2013. 12: p. 327-351.
    50. G. Instruments, "Basic Principles and Measurements".
    51. D. Bartesaghi, et al., "Competition between recombination and extraction of free charges determines the fill factor of organic solar cells". Nature Communications, 2015. 6: p. 7083.
    52. K. Kukreti, et al., "Recent advancements and overview of organic solar cell". 2016.
    53. N. Pellet, et al., "Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting". Angewandte Chemie International Edition, 2014. 53: p. 3151-3157.
    54. N.J. Jeon, et al., "Compositional engineering of perovskite materials for high-performance solar cells". Nature, 2015. 517: p. 476.
    55. M. Saliba, et al., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency". Energy & Environmental Science, 2016. 9: p. 1989-1997.
    56. C. Yi, et al., "Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells". Energy & Environmental Science, 2016. 9: p. 656-662.
    57. W.S. Yang, et al., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells". Science, 2017. 356: p. 1376-1379.
    58. N.J. Jeon, et al., "A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells". Nature Energy, 2018. 3: p. 682-689.
    59. M. Saliba, et al., "Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance". Science, 2016: p. aah5557.
    60. M. Abdi-Jalebi, et al., "Maximizing and stabilizing luminescence from halide perovskites with potassium passivation". Nature, 2018. 555: p. 497.
    61. L. Mao, et al., "Hybrid Dion–Jacobson 2D Lead Iodide Perovskites". Journal of the American Chemical Society, 2018. 140(10): p. 3775-3783.
    62. D.B. Mitzi, et al., "Organic-inorganic electronics". IBM Journal of Research and Development, 2001. 45: p. 29-45.
    63. I.C. Smith, et al., "A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability". Angewandte Chemie International Edition, 2014. 53: p. 11232-11235.
    64. D.H. Cao, et al., "2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications". Journal of the American Chemical Society, 2015. 137: p. 7843-7850.
    65. H. Tsai, et al., "High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells". Nature, 2016. 536: p. 312.
    66. Y. Chen, et al., "Tailoring Organic Cation of 2D Air-Stable Organometal Halide Perovskites for Highly Efficient Planar Solar Cells". Advanced Energy Materials, 2017. 7(18): p. 1700162.
    67. L.N. Quan, et al., "Ligand-Stabilized Reduced-Dimensionality Perovskites". Journal of the American Chemical Society, 2016. 138: p. 2649-2655.
    68. Y. Hu, et al., "Hybrid Perovskite/Perovskite Heterojunction Solar Cells". ACS Nano, 2016. 10: p. 5999-6007.
    69. Z. Wang, et al., "Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites". Nature Energy, 2017. 2: p. 17135.
    70. G. Grancini, et al., "One-Year stable perovskite solar cells by 2D/3D interface engineering". Nature Communications, 2017. 8: p. 15684.
    71. J.-F. Liao, et al., "Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells". Journal of Materials Chemistry A, 2017. 5: p. 2066-2072.
    72. T. Zhang, et al., "Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells". Science Advances, 2017. 3: p. e1700841.
    73. Y. Liao, et al., "Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance". Journal of the American Chemical Society, 2017. 139(19): p. 6693-6699.
    74. S. Shao, et al., "Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency". Advanced Energy Materials, 2018. 8: p. 1702019.
    75. E. Jokar, et al., "Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells". Energy & Environmental Science, 2018. 11: p. 2353-2362.
    76. E. Jokar, et al., "Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%. Advanced Materials". 0: p. 1804835.
    77. F. Hao, et al., "Lead-free solid-state organic–inorganic halide perovskite solar cells". Nature Photonics, 2014. 8(6): p. 489.
    78. S.J. Lee, et al., "Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex". Journal of the American Chemical Society, 2016. 138(12): p. 3974-3977.
    79. W. Ke, et al., "TiO2–ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells". Journal of the American Chemical Society, 2016. 138(45): p. 14998-15003.
    80. Z. Zhao, et al., "Mixed‐Organic‐Cation Tin Iodide for Lead‐Free Perovskite Solar Cells with an Efficiency of 8.12%". Advanced Science, 2017. 4(11): p. 1700204.
    81. S.J. Lee, et al., "Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar cells". ACS Energy Letters, 2017. 3(1): p. 46-53.
    82. K. Chen, et al., "Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells". Nano Energy, 2018. 49: p. 411-418.
    83. E. Jokar, et al., "Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells". Energy & Environmental Science, 2018. 11(9): p. 2353-2362.
    84. T.M. Koh, et al., "Formamidinium tin-based perovskite with low E g for photovoltaic applications". Journal of Materials Chemistry A, 2015. 3(29): p. 14996-15000.
    85. Z. Zhu, et al., "Realizing Efficient Lead‐Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route". Advanced Materials, 2018. 30(6): p. 1703800.
    86. C. Ran, et al., "Bilateral interface engineering toward efficient 2D–3D bulk heterojunction tin halide lead-free perovskite solar cells". ACS Energy Letters, 2018. 3(3): p. 713-721.
    87. X. Sheng, et al., "Enhanced photoelectrochemical performance of ZnO photoanode with scattering hollow cavities". Applied Physics A, 2009. 96(2): p. 473-479.
    88. W. Mäntele, and E. Deniz, "UV–VIS absorption spectroscopy: Lambert-Beer reloaded". 2017, Elsevier.
    89. G.R. Rao and H.R. Sahu, "XRD and UV-Vis diffuse reflectance analysis of CeO 2-ZrO 2 solid solutions synthesized by combustion method". Journal of Chemical Sciences, 2001. 113(5-6): p. 651-658.
    90. R.K. Pandey, "Fundamentals of Electroceramics: Materials, Devices, and Applications". 2019: p. 61.
    91. U. Holzwarth and N. Gibson, "The Scherrer equation versus the'Debye-Scherrer equation'". Nature nanotechnology, 2011. 6(9): p. 534.
    92. T. W. Graham Solomons, et al., "Organic Chemistry, Binder Ready Version". 2016: p. 87.
    93. J. Schlipf and P. Müller‐Buschbaum, "Structure of Organometal Halide Perovskite Films as Determined with Grazing‐Incidence X‐Ray Scattering Methods". Advanced Energy Materials, 2017. 7(16): p. 1700131.

    下載圖示 校內:2024-07-23公開
    校外:2024-07-23公開
    QR CODE