簡易檢索 / 詳目顯示

研究生: 李家銘
Li, Jia-Ming
論文名稱: 抵達時間未知訊號的頻譜感測能量偵測器之改善
Improved Energy Detection Based Spectrum Sensing with Unknown Signal Arrival Time
指導教授: 卿文龍
Chin, Wen-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 63
中文關鍵詞: 感知無線電能量偵測器廣泛概似比試驗頻譜感測
外文關鍵詞: Cognitive Radio, Energy Detector, Generalized Likelihood Ratio Test, Spectrum Sensing
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線感知系統中,次要使用者(Secondary user)要進行頻譜感測(Spectrum sensing)時,相對於以往的盲目取樣,若是可以先進行與主要使用者(Primary user)的時間同步,在感測上觀察視窗的決定可以有依據許多,因此本論文首先介紹傳統能量偵測器,進而假設主要使用者隨機存取頻帶的時間依循均勻分佈時,分析能量偵測器的效能變化,並在模擬驗證之餘提出解析解(analysis result),為了得到近似最佳且更為實際的能量偵測器,提出基於廣泛概似比估測(Generalized likelihood ratio test, GLRT)的偵測演算法,並針對其中時間同步問題所使用的最大概似估測法(Maximum-likelihood estimation, MLE)及其延續的能量偵測器,分別提出了個別對應的解析解,本論文所提之偵測器有著相對其他著作的低複雜度,並能有效改善傳統能量偵測器於主要使用者抵達時間未知的問題上。

    Timing misalignment issue should be addressed for the spectrum sensing in future cognitive radio (CR) systems, such as femtocell networks. To obtain a near-optimal and practical energy detector (ED), this work studies an energy detector based on the generalized likelihood ratio test (GLRT) principle. Maximum-likelihood (ML) estimation of the timing misalignment is proposed. The performance is analyzed. The proposed detector has a low complexity and can approach the optimal performance.

    中文摘要 i 英文摘要 ii 誌謝 xi 目錄 xii 圖目錄 xiv 符號說明 xvi 第一章 緒論 1 1.1 基礎知識 1 1.1.1 無線電頻譜的使用狀況 1 1.1.2 感知無線電 3 1.1.3 時間同步 5 1.2 研究動機 6 1.3 文獻回顧 7 1.4 論文架構 9 第二章 系統架構 10 2.1 訊號模型 10 2.2 時間延遲的隨機模型 12 第三章 廣泛概似比試驗 13 3.1 最大概似估測 13 3.2 能量偵測器 19 3.3 能量偵測器應用於到達時間未知訊號 26 3.4 廣泛概似比試驗應用於到達時間未知訊號 32 第四章 模擬與比較 39 4.1 與貝氏法則偵測器之比較 39 4.2 延遲時間的隨機分佈影響 40 4.3 接收者操作特徵曲線(ROC) 42 4.4 雜訊變異數由估測所得之影響 43 4.5 觀察視窗大小的影響 46 4.6 假警報機率分析 47 4.7 偵測器複雜度分析 48 第五章 結論與未來展望 50 參考文獻 52 附件A:最大概似估測解析解推導 54 附件B:MATLAB的不定積分 60 附件C:合併變異數 62

    [1] Federal Communication Commission. “Spectrum Policy Task Force Report,” ET Docker 02-155, Nov. 2002.
    [2] 林高淵, “感知無線電之運用與發展,” 中華民國電子零件認證委員會, IECQ報導第五十二期, 2008.
    [3] J. Mitola, “Cognitive radio,” Licentiate proposal, KTH, Stockholm, Sweden.
    [4] A. Iqbal, H. Mahmood, U. Farooq, M. A. Kabir, M. U. Asad, “Cognitive Radio: A Breakthrough, Revolution in Wireless Communication,” in Proc. IEEE Computer Society, pp. 300-303, Dec. 2009
    [5] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Networks, vol.50, no. 13, pp. 2127-2159, Sep. 2006.
    [6] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications,” IEEE J. Sel. Area Commun., vol. 23, no. 2, pp. 201-220 Feb. 2005
    [7] E. Hossain and V. K. Bhargava, Cognitive Wireless Communication networks, Springer, 2007.
    [8] I. Guvenc, S. Tombaz, M. E. Sahin, H. Arslan, and H. A. Cırpan “ICI-Minimizing Blind Uplink Time Synchronizationfor OFDMA-Based Cognitive Radio Systems,” in Proc. IEEE GLOBECOM, pp. 1-6, Nov. 2009
    [9] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Communications Surveys & Tutorials, vol. 11, no. 1, Q1 2009.

    [10] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation Issues in Spectrum Sensing for Cognitive Radios,” in Proc. IEEE Signals, Syst., Comput., vol. 1, pp. 772-776, Nov. 2004.
    [11] N. C. Beaulieu and Y. Chen, “Improved energy detectors for cognitive radios with randomly arriving and departing primary users,” IEEE Signal Processing Letters, vol. 17, no. 10, pp. 867-870, Oct. 2010.
    [12] J. Y. Wu, C. H. Wang, and T. Y. Wang, “Performance analysis of energy detection based spectrum sensing with unknown primary signal arrival time,” IEEE Trans. on Commun., vol. 59, no. 7, pp. 1779-1784, Jul. 2011.
    [13] J. Y. Wu, P. H. Huang, and T. Y. Wang, “Energy Detection Based Spectrum Sensing with Random Arrival and Departure of Primary User’s Signal,” in Proc IEEE Globecom Workshop-Broadband Wireless Access, pp. 380-384, Dec. 2013.
    [14] S. M. Kay, Fundamental of Statistical Signal Processing vol. 2-detection theory, Prentice-Hall PTR, 1998.
    [15] R. L. Plackett. Karl pearson and the chi-squared test. International Statistical Review / Revue Internationale de Statistique, 51(No.1):59-64, 1983.
    [16] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and products, 7th ed., Academic Press, 2007.
    [17] P. R. Killeen , “An alternative to null-hypothesis significance tests,” Psychol. Sci., May 2005.

    無法下載圖示 校內:2020-01-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE