| 研究生: |
李家銘 Li, Jia-Ming |
|---|---|
| 論文名稱: |
抵達時間未知訊號的頻譜感測能量偵測器之改善 Improved Energy Detection Based Spectrum Sensing with Unknown Signal Arrival Time |
| 指導教授: |
卿文龍
Chin, Wen-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 感知無線電 、能量偵測器 、廣泛概似比試驗 、頻譜感測 |
| 外文關鍵詞: | Cognitive Radio, Energy Detector, Generalized Likelihood Ratio Test, Spectrum Sensing |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在無線感知系統中,次要使用者(Secondary user)要進行頻譜感測(Spectrum sensing)時,相對於以往的盲目取樣,若是可以先進行與主要使用者(Primary user)的時間同步,在感測上觀察視窗的決定可以有依據許多,因此本論文首先介紹傳統能量偵測器,進而假設主要使用者隨機存取頻帶的時間依循均勻分佈時,分析能量偵測器的效能變化,並在模擬驗證之餘提出解析解(analysis result),為了得到近似最佳且更為實際的能量偵測器,提出基於廣泛概似比估測(Generalized likelihood ratio test, GLRT)的偵測演算法,並針對其中時間同步問題所使用的最大概似估測法(Maximum-likelihood estimation, MLE)及其延續的能量偵測器,分別提出了個別對應的解析解,本論文所提之偵測器有著相對其他著作的低複雜度,並能有效改善傳統能量偵測器於主要使用者抵達時間未知的問題上。
Timing misalignment issue should be addressed for the spectrum sensing in future cognitive radio (CR) systems, such as femtocell networks. To obtain a near-optimal and practical energy detector (ED), this work studies an energy detector based on the generalized likelihood ratio test (GLRT) principle. Maximum-likelihood (ML) estimation of the timing misalignment is proposed. The performance is analyzed. The proposed detector has a low complexity and can approach the optimal performance.
[1] Federal Communication Commission. “Spectrum Policy Task Force Report,” ET Docker 02-155, Nov. 2002.
[2] 林高淵, “感知無線電之運用與發展,” 中華民國電子零件認證委員會, IECQ報導第五十二期, 2008.
[3] J. Mitola, “Cognitive radio,” Licentiate proposal, KTH, Stockholm, Sweden.
[4] A. Iqbal, H. Mahmood, U. Farooq, M. A. Kabir, M. U. Asad, “Cognitive Radio: A Breakthrough, Revolution in Wireless Communication,” in Proc. IEEE Computer Society, pp. 300-303, Dec. 2009
[5] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Networks, vol.50, no. 13, pp. 2127-2159, Sep. 2006.
[6] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications,” IEEE J. Sel. Area Commun., vol. 23, no. 2, pp. 201-220 Feb. 2005
[7] E. Hossain and V. K. Bhargava, Cognitive Wireless Communication networks, Springer, 2007.
[8] I. Guvenc, S. Tombaz, M. E. Sahin, H. Arslan, and H. A. Cırpan “ICI-Minimizing Blind Uplink Time Synchronizationfor OFDMA-Based Cognitive Radio Systems,” in Proc. IEEE GLOBECOM, pp. 1-6, Nov. 2009
[9] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Communications Surveys & Tutorials, vol. 11, no. 1, Q1 2009.
[10] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation Issues in Spectrum Sensing for Cognitive Radios,” in Proc. IEEE Signals, Syst., Comput., vol. 1, pp. 772-776, Nov. 2004.
[11] N. C. Beaulieu and Y. Chen, “Improved energy detectors for cognitive radios with randomly arriving and departing primary users,” IEEE Signal Processing Letters, vol. 17, no. 10, pp. 867-870, Oct. 2010.
[12] J. Y. Wu, C. H. Wang, and T. Y. Wang, “Performance analysis of energy detection based spectrum sensing with unknown primary signal arrival time,” IEEE Trans. on Commun., vol. 59, no. 7, pp. 1779-1784, Jul. 2011.
[13] J. Y. Wu, P. H. Huang, and T. Y. Wang, “Energy Detection Based Spectrum Sensing with Random Arrival and Departure of Primary User’s Signal,” in Proc IEEE Globecom Workshop-Broadband Wireless Access, pp. 380-384, Dec. 2013.
[14] S. M. Kay, Fundamental of Statistical Signal Processing vol. 2-detection theory, Prentice-Hall PTR, 1998.
[15] R. L. Plackett. Karl pearson and the chi-squared test. International Statistical Review / Revue Internationale de Statistique, 51(No.1):59-64, 1983.
[16] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and products, 7th ed., Academic Press, 2007.
[17] P. R. Killeen , “An alternative to null-hypothesis significance tests,” Psychol. Sci., May 2005.
校內:2020-01-28公開