簡易檢索 / 詳目顯示

研究生: 蕭敬倫
Xiao, Jin-Lun
論文名稱: 可變螺距外罩式水渦輪機之性能計算模擬
Performance Numerical Simulation of a Ducted Water Turbine with Variable Pitch Blades
指導教授: 陳世雄
Chen, Shih-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 可變螺距外罩式水渦輪機
外文關鍵詞: Variable Pitch, Ducted, Water Turbine
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用CFD方法針對水渦輪機三維流場進行數值模擬研究,數值方法採用CFX有限體積法求解三維Reynolds-Averaged Navier-Stokes方程式,配合k-ε紊流模型與非結構性網格,探討一個小型水渦輪機在有無安裝外罩的情況下其效率的差別,並探討不同葉片安裝角度變化下的性能特性,以期在廣泛的流速條件下均能夠有優異性能的發揮。探討的模型是以一具1KW額定輸出功率的小型水渦輪機為基礎,流速範圍為1m/s至10m/s,安裝角變化角度由基礎的角度為基準調整範圍由-15度至30度,轉速固定為240rpm。研究的重點在於不同葉尖速比的條件下整體扭力及功率的輸出,與其效率的表現,並據以訂立在各種操作環境下的控制邏輯,以達水渦輪機最佳性能發揮的基礎。論文中討論數值仿真方法、物理模型、重要參數條件、結果的探討及建議達最佳性能發揮的控制邏輯,以做為未來設計者的參考。

    This research simulates the 3-D flow-field and the performance of a shrouded small water turbine at various pitch angles by using CFD method. The comparisonsof the power and torque for the turbine with and without shroud are also discussed. The solving CFX numerical method numerically with finite volume method and involving the k-ε turbulence model and unstructured grid was adopted.The purpose of the study is expected to find out a good logic of pitch angle change for the water turbine at wide range of operating conditions. The baseline model adopted is a small water turbine with 1KW rated output. The stream speed range in study is in between 1m/s to 10m/s. The pitch variation is from -15 degrees to 30 degrees, based on the baseline design. The rotational speed is kept 240rpm at all operating conditions. The major focus is to discuss the torque, power and efficiency output at various blade tip speed ratios (TSR). The obtained data are used to determine the control logic for blade pitch angle selection for the water turbine to achieve the optimal performance. In this paper, the numerical method, physical model, selected parameters for study, main results, and finally the suggestion of control logic to achieve the best performance over a wide operating range are discussed for design reference.

    中文摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XIV 第一章緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-3 內容概要 5 第二章數值方法 6 2-1 統御方程式 6 2-2 紊流模型 9 2-3 壁面函數 10 2-4 有限體積法 11 2-4.1 控制體積 13 2-4.2 壓力項與擴散項的處理 15 2-4.3 數值通量的計算 16 2-5 非交錯網格 18 2-6 矩陣解法 19 第三章物理模型與計算環境 21 3-1 物理模型及參數定義 21 3-2 流道計算區域設定 22 3-3 流道網格建立 23 3-4 流道網格數驗證 23 3-5 邊界條件與計算環境設定 24 第四章結果與討論 26 4-1 無因次化參數 26 4-2 外罩對性能的影響 27 4-3數值模擬驗證 28 4-4 安裝角角度變化與葉尖速比的關係 28 4-5 功率係數與夜間速比的關係 30 4-6 扭矩係數與葉尖速比的關係 31 4-7 保持功率穩定輸出 31 第五章結論 34 參考文獻 37

    [1]經濟部能源委員會,"臺灣能源統計年報(九十年)", 2002年5月.
    [2]蘇達貞、鍾珍, "海洋能源的魅力",科學發展, 383期, 2004年11月.
    [3]徐泊樺、顏志偉, "淺談我國海洋能源之開發前景", 物理雙月刊, 29卷3 期, 2007年.
    [4]江易儒,"風力機葉片數目對性能的影響",金屬工業研究發展中心, 2006年.
    [5]Bahaja, A.S., Battena, W. M. J. and McCannb, G.,“Experimental Verifications of Numerical Predictions for the Hydrodynamic Performance of Horizontal Axis Marine Current Turbines,” Science Direct of Renewable Energy,32,pp.2479-2490, 2007.
    [6]Grassmann, H., Bet, F., Cabras, G., Ceschia, M.andCobai, D.,“A Partially Static Turbine-First Experimental Results,” Renewable Energy, 28(11), pp. 1779-1785.
    [7]Ohya, O., Karasudani, T.and Sakurai, A.,“Development of a shrouded wind turbine with a flanged diffuser,”Journal of Wind Engineeringand Industrial Aerodynamics,96,pp.524-539, 2008.
    [8] Ponta, F. L. and Jacovkis, P. M., "Marine-Current Power Generation by Diffuser-Augmented Floating Hydro-Turbines," Renewable Energy, 33(4), pp. 665-673, 2008.
    [9] Gaden, D. L. F. and Bibeau, E. L., "A Numerical Investigation into the Effect of Diffusers on the Performance of Hydro Kinetic Turbines Using a Validated Momentum Source Turbine Model," Renewable Energy, 35(6), pp. 1152-1158, 2010.
    [10]Jacovkis,P. M. and Ponta. F. L.,"Marine-Current Power Generation by Diffuser-Augmented Floating Hydro-Turbines," Renewable Energy 33, pp. 665–673, 2008.
    [11] Liu, H. P. and Liao, M. F.,“Performance Comparison of Stall-Controlled Wind Turbines and Pitch-Controlled Wind Turbine,”Machinery Design and Manufacture, Vol.8, pp. 42-43, 2005.
    [12] Shives, M. and Crwford. C., "Overall Efficiency of Ducted Tidal Current Turbines,"IEEE Journal of Oceans 2010, pp. 1-6, 2010.
    [13] Cecile, M.,"Design and Performance Assessment of a Tidal Ducted Turbine," 3rd IAHR International Meetingof the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, October 14-16, 2009.
    [14] Garrett, C. and Cummins, P., "The Efficiency of a Turbine In a Tidal Channel," Journal of Fluid Mechanics, pp. 243-251, 2007.
    [15] Bahaj, A. S. and Myers, L., "Analytical Estimates of the Energy Yield Potential from the Alderney Race (Channel Islands) using Marine Current Energy Converters," Renewable Energy, 29(12), pp. 1931-1945, 2004.
    [16] Launder, B. E. and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” Journal of Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269-289, 1974.
    [17]Patanker, S. V., Liu, C. H., and Sparrow, E. M., “Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area,” ASME Journal of Heat Transfer Vol. 99, pp. 180-186, 1977.
    [18] Schneider, G. E. and Raw, M. J., “Control Volume Finite Element Method for Heat Transfer and Fluid Flow Using Colocated Variables Computational Procedure,” Numerical Heat Transfer, Vol. 11, pp. 363-390, 1987.

    下載圖示 校內:2013-08-24公開
    校外:2013-08-24公開
    QR CODE