簡易檢索 / 詳目顯示

研究生: 周家民
Chou, Chia-Min
論文名稱: 以射頻濺鍍法製備高介電高熵(Al,Ti,Zr,Ta,Hf)Ox薄膜作為先進閘極堆疊結構
High-K High Entropy (Al,Ti,Zr,Ta,Hf)Ox Films Fabricated Using RF Sputtering For Advanced Gate Stacks
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 67
中文關鍵詞: 濺鍍法高介電常數介電層高熵(Al, Ti, Zr, Ta, Hf)Ox薄膜中熵(Ti, Zr, Ta, Hf)Ox薄膜熱穩定性
外文關鍵詞: sputtering, high-k dielectrics, high entropy (Al, Ti, Zr, Ta, Hf)Ox film, medium entropy (Ti, Zr, Ta, Hf)Ox film, thermal stability
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以反應式濺鍍法製備的高熵及中熵高介電(Al, Ti, Zr, Ta, Hf)Ox及(Ti, Zr, Ta, Hf)Ox薄膜被沉積在n-型(100)的矽上作為先進閘極堆疊結構中的介電層。經過最佳化的合成氣體熱處理後,兩者都展現了良好的CV 及 IV特性;其中又以(Ti, Zr, Ta, Hf)Ox的漏電流較高。藉由高解析度電子顯微鏡觀察 (Al, Ti, Zr, Ta, Hf)Ox 閘極堆疊結構可以計算出此薄膜的介電常數約為15。EDS的結果可以證明各元素皆均勻分布,而XPS的結果可以證明 (Al, Ti, Zr, Ta, Hf)Ox是由Al2O3, TiO2, ZrO2, Ta2O5和HfO2五種氧化物混合而成的。結合EDS和XPS的結果可以證明高熵(Al, Ti, Zr, Ta, Hf)Ox的形成。為評估(Al, Ti, Zr, Ta, Hf)Ox及(Ti, Zr, Ta, Hf)Ox薄膜的熱穩定性,兩薄膜皆以快速升降溫製程(在900 C的氮氣中持溫5秒)作處理。從XRD及HRTEM的結果可以看出受過快速升降溫製程的(Al, Ti, Zr, Ta, Hf)Ox薄膜大致可以維持非晶結構,而(Ti, Zr, Ta, Hf)Ox薄膜則是明顯地結晶了。這個結果說明了(Al, Ti, Zr, Ta, Hf)Ox有作為先進閘極堆疊結構以及次世代電晶體的潛力。

    High-entropy and medium-entropy high-k (Al, Ti, Zr, Ta, Hf)Ox and (Ti, Zr, Ta, Hf)Ox films were deposited on n-type (100) Si using reactive sputtering as dieletrics for advanced gate stacks. After optimal forming gas annealing, both films exhibited robust CV and IV characteristics; however, (Ti, Zr, Ta, Hf)Ox exhibited a higher gate leakage current than (Al, Ti, Zr, Ta, Hf)Ox did. The microstructure of (Al, Ti, Zr, Ta, Hf)Ox-based MOS gate stack was studied through HRTEM, and a dielectric constant of 15 was extracted. A uniform distribution of each constituent element was determined through EDS, and the XPS result showed that a mixing of Al2O3, TiO2, ZrO2, Ta2O5 and HfO2 in the (Al, Ti, Zr, Ta, Hf)Ox films. Thus, the formation of high-entropy (Al, Ti, Zr, Ta, Hf)Ox films was verified. Thermal stabilities of (Al, Ti, Zr, Ta, Hf)Ox and (Ti, Zr, Ta, Hf)Ox films were evaluated through a rapid thermal process (900 C for 5 s) in N2. The XRD results showed that (Al, Ti, Zr, Ta, Hf)Ox retained mostly amorphous, which was further verified through HRTEM, whereas obvious crystallization was observed for (Ti, Zr, Ta, Hf)Ox. These results indicated great promise of (Al, Ti, Zr, Ta, Hf)Ox for advanced gate stacks and next-generation transistors.

    摘要 I Abstract II 致謝 III Contents IV Figure Contents VII Table contents XI Chapter 1 Introduction 1 1.1 High-k dielectric materials 1 1.1.1 Scaling and enhanced performance 1 1.1.2 Traditional gate dielectric—SiO2 3 1.1.3 Metal–oxide–semiconductor (MOS) structure 5 1.1.4 Capacitance–voltage (C–V) behavior of a MOS structure 8 1.1.4.1 Ideal C–V characteristic 8 1.1.4.2 The effect of defects in a MOS gate stack structure 11 1.1.5 Properties of high-K materials 14 1.1.5.1 Dielectric constant and band offset 14 1.1.5.2 Thermodynamic stability on Si 16 1.1.5.3 Interface quality 17 1.1.5.4 Kinetic stability 19 1.1.6 Alternative gate dielectric—HfO2 20 1.2 High entropy materials 21 1.2.1 High entropy alloys 21 1.2.2 High entropy oxides (HEOs) 25 1.2.2.1 Dielectric properties 27 1.2.2.2 Reversible energy storage 29 1.2.2.3 CO oxidation catalyst 30 1.2.2.4 Thermal barrier coating 31 1.2.2.5 Magnetic properties 32 1.3 Motivation and objective of this study 33 Chapter 2 Experimental methods 34 2.1 Materials 34 2.1.1 Sputtering targets, gas, and substrate 34 2.1.2 Annealing gas 35 2.1.3 Sputtering targets for Al deposition 35 2.2 Equipment 36 2.2.1 Ultrasonic cleaner 36 2.2.2 Magnetron reactive sputtering 36 2.2.3 Tube furnace 37 2.2.4 Rapid thermal process (RTP) system 38 2.3 Experimental procedure 39 2.3.1 Substrate cleaning 39 2.3.2 High entropy oxide and medium entropy oxide deposition 40 2.3.3 Electrode (Al) deposition 41 2.3.4 Forming gas annealing (FGA) 42 2.3.5 Rapid thermal process (RTP) 43 2.4 Characterization 44 2.4.1 CapacitanceVoltage (CV) measurement 44 2.4.2 CurrentVoltage (IV) measurement 45 2.4.3 Transmission Electron Microscopy (TEM) 45 2.4.4 X-ray Photoelectron Spectroscopy (XPS) 46 2.4.5 X-Ray Diffraction (XRD) 47 Chapter 3 Results and discussion 48 3.1 Optimization of the fabrication of HEOs 48 3.1.1 Composition tuning 48 3.1.2 Optimizing film quality 49 3.2 Electrical properties of (Al, Ti, Zr, Ta, Hf)Ox- and (Ti, Zr, Ta, Hf)Ox-based MOS gate stacks 52 3.3 TEM results after FGA 54 3.4 EDS results 55 3.5 XPS results 56 3.6 Thermal stability (RTP) 58 Chapter 4 Conclusions and future work 61 References 62

    [1] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-kappa gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, 89(10), 5243-5275, (2001).
    [2] D. A. Neamen, Semiconductor physics and devices: basic principles. 2012: New York, NY: McGraw-Hill.
    [3] J. Robertson and R. M. Wallace, "High-K materials and metal gates for CMOS applications," Materials Science & Engineering R-Reports, 88, 1-41, (2015).
    [4] J. Robertson, "High dielectric constant oxides," European Physical Journal-Applied Physics, 28(3), 265-291, (2004).
    [5] S. M. Sze and K. K. Ng, Physics of semiconductor devices. 2006: John wiley & sons.
    [6] J. Robertson, "High dielectric constant gate oxides for metal oxide Si transistors," Reports on Progress in Physics, 69(2), 327-396, (2006).
    [7] J. H. Choi, Y. Mao, and J. P. Chang, "Development of hafnium based high-k materials-A review," Materials Science & Engineering R-Reports, 72(6), 97-136, (2011).
    [8] M. Gutowski, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, "Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2," Applied Physics Letters, 80(11), 1897-1899, (2002).
    [9] G. Lucovsky, Y. Wu, H. Niimi, V. Misra, and J. C. Phillips, "Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer and composite gate dielectrics," Applied Physics Letters, 74(14), 2005-2007, (1999).
    [10] K. Xiong, J. Robertson, and S. J. Clark, "Passivation of oxygen vacancy states in HfO2 by nitrogen," Journal of Applied Physics, 99(4), (2006).
    [11] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "Hafnium and zirconium silicates for advanced gate dielectrics," Journal of Applied Physics, 87(1), 484-492, (2000).
    [12] P. F. Lee, J. Y. Dai, K. H. Wong, H. L. W. Chan, and C. L. Choy, "Growth and characterization of Hf-aluminate high-k gate dielectric ultrathin films with equivalent oxide thickness less than 10 angstrom," Journal of Applied Physics, 93(6), 3665-3667, (2003).
    [13] C. Zhao, O. Richard, E. Young, H. Bender, G. Roebben, S. Haukka, S. De Gendt, M. Houssa, R. Carter, W. Tsai, O. Van Ber Biest, and M. Heyns, "Thermostability of amorphous zirconium aluminate high-k layers," Journal of Non-Crystalline Solids, 303(1), 144-149, (2002).
    [14] S. Kol and A. Y. Oral, "Hf-Based High-kappa Dielectrics: A Review," Acta Physica Polonica A, 136(6), 873-881, (2019).
    [15] X. F. Yu, C. X. Zhu, M. F. Li, A. Chin, A. Y. Du, W. D. Wang, and D. L. Kwong, "Electrical characteristics and suppressed boron penetration behavior of thermally stable HfTaO gate dielectrics with polycrystalline-silicon gate," Applied Physics Letters, 85(14), 2893-2895, (2004).
    [16] V. V. Afanas'ev, A. Stesmans, C. Zhao, M. Caymax, Z. M. Rittersma, and J. W. Maes, "Band alignment at the interface of (100)Si with HfxTa1-xOy high-kappa dielectric layers," Applied Physics Letters, 86(7), 3, (2005).
    [17] C. Ye, H. Wang, J. Zhang, Y. Ye, Y. Wang, B. Y. Wang, and Y. C. Jin, "Composition dependence of band alignment and dielectric constant for Hf1-xTixO2 thin films on Si (100)," Journal of Applied Physics, 107(10), 4, (2010).
    [18] C. Zhang, M. Gao, J. Yeh, P. Liaw, and Y. Zhang, "High-Entropy alloys: fundamentals and applications," (2016).
    [19] P. K. Huang, J. W. Yeh, T. T. Shun, and S. K. Chen, "Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating," Advanced Engineering Materials, 6(1-2), 74-78, (2004).
    [20] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes," Advanced Engineering Materials, 6(5), 299-303, (2004).
    [21] O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw, "Refractory high-entropy alloys," Intermetallics, 18(9), 1758-1765, (2010).
    [22] Y. F. Kao, S. K. Chen, T. J. Chen, P. C. Chu, J. W. Yeh, and S. J. Lin, "Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys," Journal of Alloys and Compounds, 509(5), 1607-1614, (2011).
    [23] K. Y. Tsai, M. H. Tsai, and J. W. Yeh, "Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys," Acta Materialia, 61(13), 4887-4897, (2013).
    [24] C. Y. Hsu, C. C. Juan, W. R. Wang, T. S. Sheu, J. W. Yeh, and S. K. Chen, "On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 528(10-11), 3581-3588, (2011).
    [25] Y. Zhang, T. T. Zuo, Y. Q. Cheng, and P. K. Liaw, "High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability," Scientific Reports, 3, 7, (2013).
    [26] R. B. Li, B. W. Qiao, H. L. Shang, J. Zhang, C. X. Jiang, and W. W. Zhang, "Multi-component AlCrTaTiZrMo-nitride film with high diffusion resistance in copper metallization," Journal of Alloys and Compounds, 748, 258-264, (2018).
    [27] T. J. Harrington, J. Gild, P. Sarker, C. Toher, C. M. Rost, O. F. Dippo, C. Mcelfresh, K. Kaufmann, E. Marin, L. Borowski, P. E. Hopkins, J. Luo, S. Curtarolo, D. W. Brenner, and K. S. Vecchio, "Phase stability and mechanical properties of novel high entropy transition metal carbides," Acta Materialia, 166, 271-280, (2019).
    [28] J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M. C. Quinn, W. M. Mellor, N. Zhou, K. Vecchio, and J. Luo, "High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics," Scientific Reports, 6, 37946, (2016).
    [29] R. Z. Zhang, F. Gucci, H. Y. Zhu, K. Chen, and M. J. Reece, "Data-Driven Design of Ecofriendly Thermoelectric High-Entropy Sulfides," Inorganic Chemistry, 57(20), 13027-13033, (2018).
    [30] C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, and J. P. Maria, "Entropy-stabilized oxides," Nature Communications, 6, (2015).
    [31] D. Berardan, S. Franger, D. Dragoe, A. K. Meena, and N. Dragoe, "Colossal dielectric constant in high entropy oxides," Physica Status Solidi-Rapid Research Letters, 10(4), 328-333, (2016).
    [32] D. Berardan, S. Franger, A. K. Meena, and N. Dragoe, "Room temperature lithium superionic conductivity in high entropy oxides," Journal of Materials Chemistry A, 4(24), 9536-9541, (2016).
    [33] H. Chen, J. Fu, P. F. Zhang, H. G. Peng, C. W. Abney, K. C. Jie, X. M. Liu, M. F. Chi, and S. Dai, "Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability," Journal of Materials Chemistry A, 6(24), 11129-11133, (2018).
    [34] S. C. Jiang, T. Hu, J. Gild, N. X. Zhou, J. Y. Nie, M. D. Qin, T. Harrington, K. Vecchio, and J. Luo, "A new class of high-entropy perovskite oxides," Scripta Materialia, 142, 116-120, (2018).
    [35] J. Dabrowa, M. Stygar, A. Mikula, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, and M. Martin, "Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)(3)O-4 high entropy oxide characterized by spinel structure," Materials Letters, 216, 32-36, (2018).
    [36] K. P. Chen, X. T. Pei, L. Tang, H. R. Cheng, Z. M. Li, C. W. Li, X. W. Zhang, and L. A. An, "A five-component entropy-stabilized fluorite oxide," Journal of the European Ceramic Society, 38(11), 4161-4164, (2018).
    [37] J. Gild, M. Samiee, J. L. Braun, T. Harrington, H. Vega, P. E. Hopkins, K. Vecchio, and J. Luo, "High-entropy fluorite oxides," Journal of the European Ceramic Society, 38(10), 3578-3584, (2018).
    [38] Y. P. Pu, Q. W. Zhang, R. Li, M. Chen, X. Y. Du, and S. Y. Zhou, "Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic," Applied Physics Letters, 115(22), 5, (2019).
    [39] S. Y. Zhou, Y. P. Pu, Q. W. Zhang, R. K. Shi, X. Guo, W. Wang, J. M. Ji, T. C. Wei, and T. Ouyang, "Microstructure and dielectric properties of high entropy Ba (Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O-3 perovskite oxides," Ceramics International, 46(6), 7430-7437, (2020).
    [40] N. Qiu, H. Chen, Z. M. Yang, S. Sun, Y. Wang, and Y. H. Cui, "A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance," Journal of Alloys and Compounds, 777, 767-774, (2019).
    [41] A. Sarkar, L. Velasco, D. Wang, Q. S. Wang, G. Talasila, L. De Biasi, C. Kubel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, and B. Breitung, "High entropy oxides for reversible energy storage," Nature Communications, 9, (2018).
    [42] S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. D. Yang, and G. A. Somorjai, "Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions," Nature Materials, 8(2), 126-131, (2009).
    [43] K. Ren, Q. K. Wang, G. Shao, X. F. Zhao, and Y. G. Wang, "Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating," Scripta Materialia, 178, 382-386, (2020).
    [44] A. Q. Mao, H. Z. Xiang, Z. G. Zhang, K. Kuramoto, H. Zhang, and Y. G. Jia, "A new class of spinel high-entropy oxides with controllable magnetic properties," Journal of Magnetism and Magnetic Materials, 497, 5, (2020).
    [45] E. O. Filatova and A. S. Konashuk, "Interpretation of the Changing the Band Gap of Al2O3 Depending on Its Crystalline Form: Connection with Different Local Symmetries," Journal of Physical Chemistry C, 119(35), 20755-20761, (2015).
    [46] B. Bharti, S. Kumar, H. N. Lee, and R. Kumar, "Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment," Scientific Reports, 6, 12, (2016).
    [47] C. Morant, J. M. Sanz, L. Galan, L. Soriano, and F. Rueda, "AN XPS STUDY OF THE INTERACTION OF OXYGEN WITH ZIRCONIUM," Surface Science, 218(2-3), 331-345, (1989).
    [48] D. Barreca, A. Milanov, R. A. Fischer, A. Devi, and E. Tondello, "Hafnium oxide thin film grown by ALD: An XPS study," Surface Science Spectra, 14(1), 34-40, (2007).
    [49] H. Hernandez-Arriaga, E. Lopez-Luna, E. Martínez‐Guerra, M. Turrubiartes, A. Rodriguez, and M. Vidal, "Growth of HfO2/TiO2 nanolaminates by atomic layer deposition and HfO2-TiO2 by atomic partial layer deposition," Journal of Applied Physics, 121(6), 064302, (2017).
    [50] S.-F. Ho, S. Contarini, and J. Rabalais, "Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M= chromium, molybdenum, tungsten, vanadium, niobium and tantalum," Journal of Physical Chemistry, 91(18), 4779-4788, (1987).

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE