| 研究生: |
廖怡涵 Liao, Yi-Han |
|---|---|
| 論文名稱: |
改質蒙脫土黏土對大腸桿菌之抗菌分析與材料解析 Antibacterial Activity against Escherichia coli and Material Characterizations of Modified Montmorillonite Clay |
| 指導教授: |
廖寶琦
Liao, Pao-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 蒙脫土 、抗菌 、泊洛沙姆 |
| 外文關鍵詞: | montmorillonite, antibacterial, poloxamer |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蒙脫土(Montmorillonite)為天然矽酸鹽礦產,常被作為載體,被應用的領域很廣泛,近年來已成為抗菌材料良好的基材。本研究針對經界面活性劑泊洛沙姆(poloxamer)改質的市售蒙脫土進行材料分析以及對大腸桿菌(Escherichia coli)抗菌活性檢測,有助於對此改質黏土有基本了解,進一步提出其相關可能的抗菌機制。
利用電子顯微鏡(SEM)、X光繞射儀(XRD)、紅外光譜儀(FTIR)、示熱差分析儀(DTA/TG)、X光電子能譜儀(XPS)和感應耦合電漿質譜儀(ICP-MS)等,進行材料結構與組成分析。實驗結果得知改質蒙脫土呈現層狀結構,主要由鈣、鎂、鋁、矽、以及氧元素等所組成,其中介面活性劑則占總重百分之二十四。接著評估改質蒙脫土對大腸桿菌抗菌活性,發現當其劑量高達2310 ppm時,其釋出鈣離子濃度為110 ppm,已顯著抑制細菌生長。除此之外,為了瞭解抗菌機制源由,本研究一方面收集了經過抗菌活性測試後的黏土,重新植菌,評估其抗菌能力;另一方面,比較抗菌前後其材料的差異性。結果顯示使用後的黏土無法再具有抗菌能力,且液態培養基中含有黏土所釋出的鈣離子與泊洛沙姆的濃度隨之顯著下降了,從FTIR、XPS、和ICP-MS實驗結果得到一致性變化趨勢,加以佐證。
根據結果推論,此改質蒙脫土的抗菌機制可能與黏土本身釋出鈣離子與泊洛沙姆有密切關係,並且蒙脫土因良好吸附能力而引起抗菌加成作用,而達到良好的抗菌效果。
Montmorillonite(MMT) is the natural aluminosilicate clay mineral. It has been widely applied in various fields, especially used as antibacterial agent carriers. The purpose of this study was to characterize commercial poloxamer-modified montmorillonite clay (PM-MMT) and to estimate its antibacterial activity against Escherichia coli (E. coli). Furthermore, the possible antibacterial mechanism of PM-MMT clay will be proposed.
First of all, PM-MMT clay was characterized with its morphology and compositions using scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform infrared (FTIR), differential thermal analysis/thermogravimetric analysis (DTA/TG), X-ray photoelectron spectrometer (XPS), and inductive coupled plasma-mass spectrometer(ICP-MS). It showed that PM-MMT has the sheet structure, mainly composed of Ca, Mg, Al, Si and O elements in clay, and a weight fraction of around 24% poloxamer. Second, E. coli was chosen as an indicator to estimate the antibacterial activity of the PM- MMT clay. It was found that E. coli with the treatment of 2310 ppm clay was depressed their growth, and clay released calcium ion around 110 ppm. Besides, in order to know if the PM-MMT clay exhibited antibacterial activities, the used clay after antibacterial assys was collected, estimated their antibacterial activities, and compared the differences of the compositions. However, the used clay no longer retained antibacterial activities anymore. From FTIR, XPS and ICP-MS consistent results, the released amount of calcium ion and poloxamer from used caly dramatically decreased.
According to the above results, the possible antibacterial mechanism may relate to the release of the poloxamer and calcium ions. In addition, PM-MMT can achieve good antibacterial effect due to the synergistic action of adsorption capability
Amarasinghe PM, Katti KS, Katti DR. 2008. Molecular hydraulic properties of montmorillonite: a polarized fourier transform infrared spectroscopic study. Appl Spectrosc 62(12): 1303-1313.
Bao Y, Ma JZ. 2011. Polymethacrylic acid/Na-montmorillonite/SiO2 nanoparticle composites structures and thermal properties. Polym Bull 66(4): 541-549.
Cho Lee A-R, Leem H, Lee J, Chan Park K. 2005. Reversal of silver sulfadiazine-impaired wound healing by epidermal growth factor. Biomaterials 26(22): 4670-4676.
Chardonnet CO, Sams CE, Conway WS. 1999. Calcium effect on the mycelial cell walls of Botrytis cinerea. Phytochemistry 52(6): 967-973.
Djouani F, Herbst F, Chehimi MM, Benzarti K. 2011. Synthesis, characterization and reinforcing properties of novel, reactive clay/poly(glycidyl methacrylate) nanocomposites. Construction and Building Materials 25(2): 424-431.
Droby S, Wisniewski ME, Cohen L, Weiss B, Touitou D, Eilam Y, et al. 1997. Influence of CaCl2 on Penicillium digitatum, grapefruit peel tissue, and biocontrol activity of Pichia guilliermondii. Phytopathology 87(3): 310-315.
Durán N, Marcato PD, Conti RD, Alves OL, Costa FTM, Brocchi M. 2010. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. Journal of the Brazilian Chemical Society 21: 949-959.
Fujimori A, Kusaka J-I, Nomura R. 2011. Formation and structure of organized molecular films for organo-modified montmorillonite and mixed monolayer behavior with poly(L-lactide). Polymer Engineering & Science 51(6): 1099-1107.
Fejér I, Kata M, Erös I, Berkesi O, Dékány I. 2001. Release of cationic drugs from loaded clay minerals. Colloid & Polymer Science 279(12): 1177-1182.
Fong N, Simmons A, Poole-Warren LA. 2010. Antibacterial polyurethane nanocomposites using chlorhexidine diacetate as an organic modifier. Acta Biomaterialia 6(7): 2554-2561.
Griffin PM, Tauxe RV. 1991. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev 13: 60-98.
Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn R, Sclimenti MJ, et al. 2006. Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology 40(23): 7175-7185.
Hsu S-h, Tseng H-J, Lin Y-C. 2010. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 31(26): 6796-6808.
Hu CH, Xia MS. 2006. Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K-88. Appl Clay Sci 31(3-4): 180-184.
Herrera P, Burghardt RC, Phillips TD. 2000. Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays. Veterinary Microbiology 74(3): 259-272.
He HP, Yang D, Yuan P, Shen W, Frost RL. 2006. A novel organoclay with antibacterial activity prepared from montmorillonite and Chlorhexidini Acetas. J Colloid Interf Sci 297(1): 235-243.
He C, Kim SW, Lee DS. 2008. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. Journal of Controlled Release 127(3): 189-207.
Hunter RL, Jagannath C, Tinkley A, Behling CA, Nolte F. 1995. Enhancement of antibiotic susceptibility and suppression of Mycobacterium avium complex growth by Poloxamer-331. Antimicrob Agents Ch 39(2): 435-439.
Jones N, Ray B, Ranjit KT, Manna AC. 2008. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1): 71-76.
Jiao J. 2008. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Advanced Drug Delivery Reviews 60(15): 1663-1673.
Joo MK, Park MH, Choi BG, Jeong B. 2009. Reverse thermogelling biodegradable polymer aqueous solutions. J Mater Chem 19(33): 5891-5905.
Jagannath C, Emanuele MR, Hunter RL. 1999. Activities of Poloxamer CRL-1072 against Mycobacterium avium in Macrophage Culture and in Mice. Antimicrob Agents Chemother 43(12): 2898-2903.
Li XH, Xing Y, Jiang YH, Ding YL, Li WL. 2009. Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. Int J Food Sci Technol 44(11): 2161-2168.
Leptihn S, Har JY, Wohland T, Ding JL. 2010. Correlation of charge, hydrophobicity, and structure with antimicrobial activity of S1 and MIRIAM peptides. Biochemistry 49(43): 9161-9170.
Lin FH, Lee YH, Jian CH, Wong J-M, Shieh M-J, Wang C-Y. 2002. A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials 23(9): 1981-1987.
Lin S-H, Juang R-S. 2002. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials 92(3): 315-326.
Meng N, Zhou NL, Zhang SQ, Shen J. 2009. Controlled release and antibacterial activity chlorhexidine acetate (CA) intercalated in montmorillonite. Int J Pharmaceut 382(1-2): 45-49.
Mazur M. 2004. Electrochemically prepared silver nanoflakes and nanowires. Electrochemistry Communications 6(4): 400-403.
Mohan R, Shanmugharaj AM, Sung Hun R. 2011. An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. Journal of Biomedical Materials Research Part B: Applied Biomaterials 96B(1): 119-126.
Magaña SM, Quintana P, Aguilar DH, Toledo JA, Ángeles-Chávez C, Cortés MA, et al. 2008. Antibacterial activity of montmorillonites modified with silver. Journal of Molecular Catalysis A: Chemical 281(1-2): 192-199.
Ouyang YS, Xie YS, Tan SZ, Shi QS, Chen YB. 2009. Structure and antibacterial activity of Ce3+ exchanged montmorillonites. J Rare Earth 27(5): 858-863.
Parolo ME, Avena MJ, Pettinari G, Zajonkovsky I, Valles JM, Baschini MT. 2010. Antimicrobial properties of tetracycline and minocycline-montmorillonites. Appl Clay Sci 49(3): 194-199.
Yu JC, Ho W, Lin J, Yip H, Wong PK. 2003. Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environmental Science & Technology 37(10): 2296-2301.
Rhim JW, Hong SI, Park HM, Ng PKW. 2006. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agr Food Chem 54(16): 5814-5822.
Tenover FC. 2006. Mechanisms of antimicrobial resistance in bacteria. American journal of infection control 34(5): S3-S10.
Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. 2010. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Science of The Total Environment 408(5): 999-1006.
Tan SZ, Zhang KH, Zhang LL, Xie YS, Liu YL. 2008. Preparation and characterization of the antibacterial Zn2+ or/and Ce3+ loaded montmorillonites. Chinese J Chem 26(5): 865-869.
Tan SZ, Cai XA, Liao MH, Wu T, Liu RF, Yu BA. 2010. Thermal stability and long-acting antibacterial activity of phosphonium montmorillonites. J Cent South Univ T 17(3): 485-491.
Veyries ML, Faurisson F, Joly-Guillou ML, Rouveix B. 2000. Control of staphylococcal adhesion to polymethylmethacrylate and enhancement of susceptibility to antibiotics by poloxamer 407. Antimicrob Agents Ch 44(4): 1093-1096.
Wang XY, Du YM, Yang HH, Wang XH, Shi XW, Hu Y. 2006. Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer 47(19): 6738-6744.
Wu TS, Wang KX, Li GD, Sun SY, Sun J, Chen JS. 2010. Montmorillonite-supported Ag/TiO2 nanoparticles: an efficient visible-light bacteria photodegradation material. Acs Appl Mater Inter 2(2): 544-550.
Xi Y, Mallavarapu M, Naidu R. 2010. Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl Clay Sci 48(1-2): 92-96.
Yang D, Yuan P, Zhu J, He H. 2007. Synthesis and characterization of antibacterial compounds using montmorillonite and chlorhexidine acetate. Journal of Thermal Analysis and Calorimetry 89(3): 847-852.
Zeng QH, Wang DZ, Yu AB, Lu GQ. 2002. Synthesis of polymer-montmorillonite nanocomposites by in situ intercalative polymerization. Nanotechnology 13(5): 549-553.
Zheng JP, Luan L, Wang HY, Xi LF, Yao KD. 2007. Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl Clay Sci 36(4): 297-301.
陳自強,氫化物生成技術結合動態反應管感應偶合電漿質譜儀於生物及合金樣品中鎵、鍺、砷、硒、銻之分析,國立中山大學化學研究所,2005。
校內:2016-08-15公開