簡易檢索 / 詳目顯示

研究生: 林家豪
Lin, Chia-Hao
論文名稱: 具不同組合邊界條件嵌入式多壁奈米碳管之非線性有限元素法分析
Nonlinear Finite Element Analysis of an Embedded Multi-walled Carbon Nanotube with Various Boundary Conditions
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 35
中文關鍵詞: 多層奈米碳管基礎非線性撓曲非局部混合Timoshenko梁理論Reissner混合變分原理凡德瓦爾交互作用力非線性有限元素法
外文關鍵詞: Multi-walled carbon nanotubes, Foundations, Nonlinear bending, Nonlocal mixed Timoshenko beam theory, Reissner’s mixed variational theorem, van der Waals interaction, Nonlinear FEM
相關次數: 點閱:145下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將Reissner混合變分原理和Eringen非局部彈性力學連結,發展非局部Timoshenko梁有限元素法,並將其應用於具彈性支承之多層奈米碳管幾何非線性撓曲分析。具自由端、簡支承和固定端不同組合邊界條件的多層奈米碳管在其最外層受到載重,使用He等人和Ru的模型來分別模擬在任兩層之間和僅在相鄰兩層之間的凡德瓦爾交互作用力,且使用Pasternak基礎模型來模擬多層奈米碳管和其周圍彈性介質之間的交互作用,應用Galerkin方法來推導Timoshenko梁幾何非線性有限元素分析相應的弱型式數學方程,其中考慮von Kármán幾何非線性效應,以Eringen非局部彈性理論來評估微小尺度效應,而多層奈米碳管之廣義位移和力分量的有限元素解則藉由直接迭代過程來得到。本有限元素法數值解顯示其收斂非常快速,且本有限元素法收斂解和文獻中使用基於強型式數學方程的微分擬合法所得到的解非常吻合。

    In conjunction with the Reissner mixed variational theorem (RMVT) and nonlocal Timoshenko beam theory (TBT), we develop a finite element method for the geometrically nonlinear bending analysis of a multi-walled carbon nanotube (CNT) resting on an elastic foundation. The multi-walled carbon nanotube is subjected to mechanical loads on its outermost surface, with combinations of free, simply-supported and clamped edge conditions. The van der Waals (vdW) interactive forces between all pairs of walls and between the adjacent walls only are estimated using the He et al. and Ru models, respectively, and the interaction between the multi-walled carbon nanotube and its surrounding medium is simulated using the Pasternak foundation model. A weak-form formulation for the geometrically nonlinear finite element (FE) analysis is derived using the Galerkin approach, in which the von Kármán geometrical nonlinearity (VKGN) is considered. The Eringen nonlocal elasticity theory (ENET) is used to account for the small length scale effect. The finite element solutions of the generalized displacement and force components induced in the multi-walled carbon nanotube are obtained using an iterative process. Numerical implementation shows that the finite element solutions converge rapidly, and their convergent solutions closely agree with those obtained using the differential quadrature (DQ) method, based on a strong-form formulation, available in the literature.

    摘要 I Abstract II 誌謝 VI 目錄 VII 表目錄 VIII 圖目錄 IX 第一章 緒論 1 第二章 理論推演 5 2.1 Eringen非局部彈性材料組成關係 5 2.2 凡德瓦爾交互作用力 5 2.2.1 He等人的模型(2005a ; 2005b) 6 2.2.2 Ru的模型(2000, 2004) 7 2.3 RMVT非局部幾何非線性TBT之強型式數學方程 7 2.4 RMVT非局部幾何非線性TBT之弱型式數學方程 10 第三章 數值範例 13 3.1 非嵌入式單層奈米梁 13 3.2 非嵌入式三層奈米碳管 14 3.3 嵌入式雙層和五層奈米碳管 15 第四章 結論 18 參考文獻 19

    Aydogdu, M., A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E, 41, 1651-1655, 2009.
    Aydogdu, M., Longitudinal wave propagation in multiwalled carbon nanotubes, Compos. Struct., 107, 578-584, 2014.
    Bert, C.W. and Malik, M., Differential quadrature: A powerful new technique for analysis of composite structures, Compos. Struct., 3, 179-189, 1997.
    Brischetto, S. and Carrera, E., Refined 2D models for the analysis of functionally graded piezoelectricity plates, J. Intell. Mater. Syst. Struct., 20, 1783-1797, 2009.
    Brischetto, S. and Carrera, E., Advanced mixed theories for bending analysis of functionally graded plates, Comput. Struct., 88, 1474-1483, 2010.
    Carrera, E., An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Compos. Struct., 50, 183-198, 2000.
    Carrera, E., Assessment of theories for free vibration analysis of homogeneous and multilayered plates, Shock Vib., 11, 261-270, 2004.
    Chen, S.M., Wu, C.P. and Wang, Y.M., A Hermite DRK interpolation-based collocation method for the analysis of Bernoulli-Euler beams and Kirchhoff –Love plates, Comput. Mech., 47, 425-453, 2011.
    Civalek, O. and Demir, C., A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method, Appl. Math. Comput., 289, 335-352, 2016.
    Cowper, G., The Shear Coefficient in Timoshenko’s Beam Theory, J. Appl. Mech., 33, 335-340, 1966.
    Demir, C. and Civalek, O., A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nanobeams surrounded by an elastic matrix, Compos. Struct., 168, 872-884, 2007.
    Du, H., Lim, M. and Lin, R., Application of generalized differential quadrature method to structural problems, Int. J. Numer. Methods Eng., 37, 1881-1896, 1994.
    Eltaher, M.A., Emam, S.A. and Mahmoud, F.F., Free vibration analysis of functionally graded size-dependent nanobeams, Appl. Math. Comput., 218, 7406-7420, 2012.
    Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, E.F., Vibration analysis of Euler-Bernoulli nanobeams by using finite element method, Appl. Math. Modell., 37, 4787-4797, 2013a.
    Eltaher, M.A., Emam, S.A. and Mahmoud, F.F., Static and stability analysis of nonlocal functionally graded nanobeams, Compos. Struct., 96, 82-88, 2013b.
    Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A., Mechanical analysis of higher order gradient nanobeams, Appl. Math. Comput., 229, 260-272, 2014a.
    Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A., Static and buckling analysis of functionally graded Timoshenko nanobeams, Appl. Math. Comput., 229, 283-295, 2014b.
    Eltaher, M.A., El-Borgi, S. and Reddy, J.N., Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs, Compos. Struct., 153, 902-913, 2016.
    Eringen, A.C., Nonlocal polar elastic continua, Int. J. Eng. Sci., 10, 1-16, 1972.
    Eringen, A.C. and Edelen, D., On nonlocal elasticity, Int. J. Eng. Sci., 10, 233-248, 1972.
    Eringen, A.C., Nonlocal Continuum Field Theories, Springer-Verlag, New York, 2002.
    He, X.Q., Kitipornchai, S. and Liew, K.M., Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, J. Mech. Phys. Solids, 53, 303-326, 2005a.
    He, X.Q., Kitipornchai, S., Wang, C.M. and Liew, K.M., Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells, Int. J. Solids Struct., 42, 6032-6047, 2005b.
    Khadem, S.E., Rasekh, M. and Toghraee, A., Design and simulation of a carbon nanotube-based adjustable nano-electromechanical shock switch, Appl. Math. Modell., 36, 2329-2339, 2012.
    Li, M., Tang, H.X. and Roukes, M.L., Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications, Nature Nanotechnol, 2, 114-120, 2007.
    Li, X., Bhushan, B., Takashima, K., Baek, C.W. and Kim, Y.K., Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy, 97, 481-494, 2003.
    Lignola, G.P., Spena, F.R., Prota, A. and Manfredi, G., Exact stiffness-matrix of two nodes Timoshenko beam on elastic medium-An analogy with Erigen model of nonlocal Euler-Bernoulli nanobeams, Comput. Struct., 182, 556-572, 2017.
    Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S. and El-Borgi, S., Global stability of microbeam-based electrostatic microactuators, J. Vib. Control, 16, 721-748, 2010.
    Nguyen, N.T., Kim, N.I. and Lee, J., Mixed finite element analysis of nonlocal Euler-Bernoulli nanobeams, Finite Elem. Anal. Des., 106, 65-72, 2015.
    Pei, J., Tian, F. and Thundat, T., Glucose biosensor based on the microcantilever, Anal. Chem., 76, 292-297, 2004.
    Pradhan, S.C., Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory, Finite Elem. Anal. Des., 50, 8-20, 2012.
    Pradhan, S.C. and Mandal, U., Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect, Physica E, 53, 223-232, 2013.
    Preethi, K., Rajagopal, A. and Reddy, J.N., Surface and nonlocal effects for nonlinear analysis of Timoshenko beams, Int. J. Non-linear Mech., 76, 100-111, 2015.
    Reddy, J.N., Energy and Variational Methods in Applied Mechanics, Wiley-Interscience publication, New York, 1984a.
    Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill Book Company, New York, 1984b.
    Reddy, J.N., Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., 45, 288-307, 2007.
    Reddy, J.N. and Pang, S.D., Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Appl. Phys. Lett., 103, 023511, 2008.
    Reddy, J.N. and El-Borgi, S., Eringen’s nonlocal theories of beams accounting for moderate rotations, Int. J. Eng. Sci., 82, 159-177, 2014a.
    Reddy, J.N., El-Borgi, S. and Romanoff, J., Nonlinear analysis of functionally graded microbeams using Eringen’s nonlocal differential model, Int. J. Non-linear Mech., 67, 308-318, 2014b.
    Reissner, E., On a certain mixed variational theorem and a proposed application, Int. J. Numer. Methods Eng., 20, 1366-1368, 1984.
    Reissner, E., On a mixed variational theorem and on shear deformable plate theory, Int. J. Numer. Methods Eng., 23, 193-198, 1986.
    Ru, C.Q., Column buckling of multiwalled carbon nanotubes with interlayer radial displacements, Phys. Rev. B, 62, 16962, 2000.
    Ru, C.Q., Elastic Models for Carbon Nanotubes, Encyclopedia Nanosci. Nanotech., 2, 731-744, 2004.
    Simsek, M., Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method, Compos. Struct., 112, 264-272, 2014.
    Thai, H.T., A nonlocal beam theory for bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci., 52, 56-64, 2012.
    Thai, H.T. and Vo, T.P., A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci., 54, 58-66, 2012.
    Wang, C.M., Zhang, Y.Y., Ramesh, S.S. and Kitipornchai, S., Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory, J. Phys. D-Appl. Phys., 39, 3904-3909, 2006.
    Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M., Beam bending solutions based on nonlocal Timoshenko beam theory, J. Eng. Mech., 134, 475-481, 2008.
    Wang, Q. and Wang, C., The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnol, 18, 075702, 2007.
    Wang, Y.M., Chen, S.M. and Wu, C.P., A meshless collocation method based on the differential reproducing kernel interpolation, Comput. Mech., 45, 585-606, 2010.
    Wu, C.P. and Lee, C.Y., Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffnes, Int. J. Mech. Sci., 43, 1853-1869, 2001.
    Wu, C.P., Chiu, K.H. and Wang, Y.M., A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells, CMC-Comput. Mater. Continua, 18, 93-132, 2008.
    Wu, C.P. and Li, H.Y., The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates, Compos. Struct., 92, 2476-2496, 2010.
    Wu, C.P. and Chang, S.K., Stability of carbon nanotube-reinforced composite plates with surface-bonded piezoelectric layers and under bi-axial compression, Compos. Struct., 111, 587-601, 2014.
    Wu, C.P. and Lai, W.W., Reissner’s mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions, Compos. Struct., 122, 390-404, 2015a.
    Wu, C.P. and Lai, W.W., Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method, Physica E, 68, 8-21, 2015b.
    Wu, C.P. and Liu, Y.C., A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells, Compos. Struct., 147, 1-15, 2016.
    Wu, C.P., Hong, Z.L. and Wang, Y.M., Geometrically nonlinear static analysis of an embedded multi-walled carbon nanotube and the van der Waals interaction, J. Nanomech. Micromech., 7, 04017012, 2017.
    Yang, Q. and Lim, C.W., Nonlinear thermal bending for shear deformable nanobeams based on nonlocal elasticity theory, Int. J. Aerospace Lightweight Struct., 1, 89-107, 2011.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE