簡易檢索 / 詳目顯示

研究生: 張皓甫
Zhang, Hao-Fu
論文名稱: 奈米纖維素強化聚甲基丙烯甲酯義齒材料機械特性之研究
Study of Mechanical Properties of Cellulose Nanofiber Reinforced PolyMethyl MethAcrylate Denture Base Material
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 纖維素奈米纖維TEMPO 氧化PMMA複合材料
外文關鍵詞: Cellulose Nanofiber (CNF), TEMPO oxidation, PMMA, composites
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 纖維素奈米纖維(Cellulose Nanofiber, CNF)為具有高強度比、生物可降解的奈米材料,十分具有應用的潛能。本研究以農業廢棄物稻草當作原料,並且經由鹼萃及漂白將雜質去除,萃取出纖維素,再利用2,2,6,6-四甲基哌啶-1-氧化物(2,2,6,6-Tetramethylpiperidine-1-oxyl , TEMPO)氧化法將纖維素表面改質,最後利用超音波震盪製備CNF。
    本研究的第二階段為製備CNF與PMMA的複合材料,研究其機械性質以及磨潤性質。先以OM觀察CNF在聚甲基丙烯甲酯(PolyMethyl MethAcrylate, PMMA)中的分散效果,發現在較高填料添加量的情況下會發生較嚴重的聚集,在傅立葉轉換紅外線光譜儀(Fourier-transform infrared spectroscopy, FTIR)的測試結果說明PMMA與CNF中並無產生新的鍵結,熱示差掃描量熱儀(Differential scanning calorimetry, DSC)所計算的玻璃轉換溫度無明顯的改變再一次證明PMMA與CNF為相容性不高的材料,在相容性不高及分散較良好的情況下可以提高機械性質。在磨潤性質方面由於加入CNF提高表面硬度,以及CNF的潤滑效果,使得複合材料的磨潤性質有明顯的提升。

    Cellulose Nanofiber (CNF) is a biodegradable nanomaterial with high specific strength, which has great potential for application. In this study, agricultural waste rice straw was used as the raw material, and the impurities were removed by alkaline process(AP) and bleaching process(BP). Then the cellulose was surface modified by TEMPO oxidation, and prepared CNF by ultrasonic process.
    Prepare CNF and PMMA composite materials, study its mechanical properties and wear properties. Observe the distribution of CNF in PMMA by OM. It is found that more filler addition the more serious aggregation will occur. So that adding more than 0.1 wt.% CNF, tensile strength and breaking strain are significantly decrease. In terms of wear properties, the addition of CNF can improve hardness. And the lubricating effect of CNF, which significantly improves the wear properties of composite materials.

    口試合格證明 I 摘要 II Extended abstract III 誌謝 XIII 總目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 研究目標與歷程 4 第二章 文獻回顧 5 2-1 纖維素 5 2-1-1 纖維素的結構 5 2-1-2 纖維素的結晶 7 2-2 奈米纖維素 10 2-2-1 纖維素奈米纖維機械製程 11 2-2-2 纖維素奈米纖維化學前處理 12 2-2-3 纖維素奈米纖維粉末製造 13 2-3 奈米複合材料 14 2-3-1 聚甲基丙烯酸甲酯 16 第三章 實驗內容 20 3-1 實驗目的 20 3-2 實驗簡介 21 3-3 實驗流程 22 3-4 實驗方法 23 3-4-1 純化纖維素製程 23 3-4-2 木質素含量測試 25 3-4-3 半纖維素含量測試 27 3-4-4 纖維素奈米纖維製備 29 3-4-5 表面羧酸鹽含量量測 30 3-4-6 奈米複合材料製備 31 3-4-7 拉伸性質分析 32 3-4-8 彎曲性質分析 34 3-4-9 磨耗性質測試 35 3-5 實驗設備 37 第四章 實驗結果與討論 39 4-1 純化纖維素效果測定 39 4-1-1 鹼法製漿(AP)效果測試 39 4-1-2 漂白製程(BP)效果測試 43 4-2 奈米纖維素分析 45 4-2-1 表面羧酸鹽含量測試 45 4-2-2 奈米纖維素分散性測試 47 4-2-3 奈米纖維素幾何形貌觀測 49 4-2-4 與市售奈米纖維素比較 51 4-3 CNF-PMMA奈米複合材料測試 53 4-3-1 奈米填料分散分析 53 4-3-2 機械性質測試 55 4-3-3 介面性質分析 59 4-3-4 強化機制分析 61 4-3-5 磨耗性質測試 63 第五章 總結 69 5-1 結論 69 5-2 未來方向展望 70 參考文獻 71

    [1] I. Siró and D. Plackett, "Microfibrillated cellulose and new nanocomposite materials: a review," Cellulose, vol. 17, no. 3, pp. 459-494, 2010.
    [2] N. Dunne, J. Clements, and J. Wang, "Acrylic cements for bone fixation in joint replacement," in Joint replacement technology: Elsevier, 2014, pp. 212-256.
    [3] W. Yu, X. Wang, Q. Tang, M. Guo, and J. Zhao, "Reinforcement of denture base PMMA with ZrO2 nanotubes," Journal of the mechanical behavior of biomedical materials, vol. 32, pp. 192-197, 2014.
    [4] 王熊昭, "2013 年『國民健康訪問暨藥物濫用調查』結果報告 " 國家衛生研究院, 2016.
    [5] M. A. S. Azizi Samir, F. Alloin, and A. Dufresne, "Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field," Biomacromolecules, vol. 6, no. 2, pp. 612-626, 2005.
    [6] R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, "Cellulose nanomaterials review: structure, properties and nanocomposites," Chemical Society Reviews, vol. 40, no. 7, pp. 3941-3994, 2011.
    [7] M. T. Postek et al., "Development of the metrology and imaging of cellulose nanocrystals," Measurement Science and Technology, vol. 22, no. 2, p. 024005, 2010.
    [8] A. C. O'sullivan, "Cellulose: the structure slowly unravels," Cellulose, vol. 4, no. 3, pp. 173-207, 1997.
    [9] Y. Nishiyama, "Structure and properties of the cellulose microfibril," Journal of wood science, vol. 55, no. 4, pp. 241-249, 2009.
    [10] Y. Nishiyama, G. P. Johnson, A. D. French, V. T. Forsyth, and P. Langan, "Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ," Biomacromolecules, vol. 9, no. 11, pp. 3133-3140, 2008.
    [11] V. I. Kovalenko, "Crystalline cellulose: structure and hydrogen bonds," Russian Chemical Reviews, vol. 79, no. 3, p. 231, 2010.
    [12] A. Watanabe, S. Morita, and Y. Ozaki, "Temperature-dependent changes in hydrogen bonds in cellulose Iα studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Iβ," Biomacromolecules, vol. 8, no. 9, pp. 2969-2975, 2007.
    [13] M. R. K. Sofla, R. J. Brown, T. Tsuzuki, and T. J. Rainey, "A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 7, no. 3, p. 035004, 2016.
    [14] F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, "Microfibrillated cellulose: morphology and accessibility," in J. Appl. Polym. Sci.: Appl. Polym. Symp.;(United States), 1983, vol. 37, no. CONF-8205234-Vol. 2: ITT Rayonier Inc., Shelton, WA.
    [15] A. F. Turbak, F. W. Snyder, and K. R. Sandberg, "Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential," in J. Appl. Polym. Sci.: Appl. Polym. Symp.;(United States), 1983, vol. 37, no. CONF-8205234-Vol. 2: ITT Rayonier Inc., Shelton, WA.
    [16] W. Chen, H. Yu, Y. Liu, Y. Hai, M. Zhang, and P. Chen, "Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process," Cellulose, vol. 18, no. 2, pp. 433-442, 2011.
    [17] A. Bhatnagar and M. Sain, "Processing of cellulose nanofiber-reinforced composites," Journal of Reinforced Plastics and Composites, vol. 24, no. 12, pp. 1259-1268, 2005.
    [18] T. T. T. Ho, K. Abe, T. Zimmermann, and H. Yano, "Nanofibrillation of pulp fibers by twin-screw extrusion," Cellulose, vol. 22, no. 1, pp. 421-433, 2015.
    [19] B. M. Cherian, A. L. Leão, S. F. De Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy, "Isolation of nanocellulose from pineapple leaf fibres by steam explosion," Carbohydrate Polymers, vol. 81, no. 3, pp. 720-725, 2010.
    [20] L. Zhang, T. Tsuzuki, and X. Wang, "Preparation of cellulose nanofiber from softwood pulp by ball milling," Cellulose, vol. 22, no. 3, pp. 1729-1741, 2015.
    [21] R. Kose, I. Mitani, W. Kasai, and T. Kondo, "“Nanocellulose” as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision," Biomacromolecules, vol. 12, no. 3, pp. 716-720, 2011.
    [22] Ø. Eriksen, K. Syverud, and Ø. Gregersen, "The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper," Nordic Pulp & Paper Research Journal, vol. 23, no. 3, pp. 299-304, 2008.
    [23] O. Nechyporchuk, M. N. Belgacem, and J. Bras, "Production of cellulose nanofibrils: A review of recent advances," Industrial Crops and Products, vol. 93, pp. 2-25, 2016.
    [24] M. Henriksson, G. Henriksson, L. Berglund, and T. Lindström, "An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers," European Polymer Journal, vol. 43, no. 8, pp. 3434-3441, 2007.
    [25] A. Isogai, T. Saito, and H. Fukuzumi, "TEMPO-oxidized cellulose nanofibers," Nanoscale, vol. 3, no. 1, pp. 71-85, 2011.
    [26] L. Wågberg, G. Decher, M. Norgren, T. Lindström, M. Ankerfors, and K. Axnäs, "The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes," Langmuir, vol. 24, no. 3, pp. 784-795, 2008.
    [27] T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, "Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose," Biomacromolecules, vol. 8, no. 8, pp. 2485-2491, 2007.
    [28] Y. Peng, D. J. Gardner, and Y. Han, "Drying cellulose nanofibrils: in search of a suitable method," Cellulose, vol. 19, no. 1, pp. 91-102, 2012.
    [29] J. Han, C. Zhou, Y. Wu, F. Liu, and Q. Wu, "Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge," Biomacromolecules, vol. 14, no. 5, pp. 1529-1540, 2013.
    [30] F. Jiang and Y.-L. Hsieh, "Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol," ACS applied materials & interfaces, vol. 6, no. 22, pp. 20075-20084, 2014.
    [31] H. Kausch and G. Michler, "Effect of nanoparticle size and size‐distribution on mechanical behavior of filled amorphous thermoplastic polymers," Journal of applied polymer science, vol. 105, no. 5, pp. 2577-2587, 2007.
    [32] S. Wu, "Phase structure and adhesion in polymer blends: A criterion for rubber toughening," Polymer, vol. 26, no. 12, pp. 1855-1863, 1985.
    [33] M. M. Gad, S. M. Fouda, F. A. Al-Harbi, R. Näpänkangas, and A. Raustia, "PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition," International journal of nanomedicine, vol. 12, p. 3801, 2017.
    [34] Y. Ucar, T. Akova, and I. Aysan, "Mechanical properties of polyamide versus different PMMA denture base materials," Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, vol. 21, no. 3, pp. 173-176, 2012.
    [35] V. Moreno‐Maldonado, L. Acosta‐Torres, F. Barceló‐Santana, R. Vanegas‐Lancón, M. Plata‐Rodríguez, and V. Castano, "Fiber‐reinforced nanopigmented poly (methyl methacrylate) as improved denture base," Journal of Applied Polymer Science, vol. 126, no. 1, pp. 289-296, 2012.
    [36] I. M. Hamouda and M. M. Beyari, "Addition of glass fibers and titanium dioxide nanoparticles to the acrylic resin denture base material: comparative study with the conventional and high impact types," Oral Health Dent Manag, vol. 13, no. 1, pp. 107-112, 2014.
    [37] A. P. Farina et al., "Evaluation of Vickers hardness of different types of acrylic denture base resins with and without glass fibre reinforcement," Gerodontology, vol. 29, no. 2, pp. e155-e160, 2012.
    [38] K. Soygun, G. Bolayir, and A. Boztug, "Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials," The journal of advanced prosthodontics, vol. 5, no. 2, pp. 153-160, 2013.
    [39] S.-H. Yu, Y. Lee, S. Oh, H.-W. Cho, Y. Oda, and J.-M. Bae, "Reinforcing effects of different fibers on denture base resin based on the fiber type, concentration, and combination," Dental materials journal, vol. 31, no. 6, pp. 1039-1046, 2012.
    [40] G. Uzun, N. Hersek, and T. Tincer, "Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin," The Journal of prosthetic dentistry, vol. 81, no. 5, pp. 616-620, 1999.
    [41] N. Arora, V. Jain, A. Chawla, and V. Mathur, "Effect of addition of sapphire (aluminium oxide) or silver fillers on the flexural strength thermal diffusivity and water sorption of heat polymerized acrylic resins," Int J Prosthodont Restorat Dent, vol. 1, no. 1, pp. 21-27, 2011.
    [42] N. V. Asar, H. Albayrak, T. Korkmaz, and I. Turkyilmaz, "Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins," The journal of advanced prosthodontics, vol. 5, no. 3, pp. 241-247, 2013.
    [43] A. Abdulhamed and A. Mohammed, "Evaluation of thermal conductivity of alumina reinforced heat cure acrylic resin and some other properties," J Bagh Coll Dent, vol. 22, no. 3, pp. 1-6, 2010.
    [44] I. N. Safi, "Evaluation the effect of nano-fillers (TiO2, AL2O3, SiO2) addition on glass transition temperature, E-Moudulus and coefficient of thermal expansion of acrylic denture base material," Journal of Baghdad College of Dentistry, vol. 325, no. 2212, pp. 1-10, 2014.
    [45] B. S. Jasim and I. J. Ismail, "The effect of silanized alumina nano-fillers addition on some physical and mechanical properties of heat cured polymethyl methacrylate denture base material," Journal of baghdad college of dentistry, vol. 26, no. 2, pp. 18-23, 2014.
    [46] M. Gad, A. S. ArRejaie, M. S. Abdel-Halim, and A. Rahoma, "The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base," International journal of dentistry, vol. 2016, 2016.
    [47] S. I. Salih, J. K. Oleiwi, and Q. A. Hamad, "Investigation of fatigue and compression strength for the PMMA reinforced by different system for denture applications," International Journal of Biomedical Materials Research, vol. 3, no. 1, pp. 5-13, 2015.
    [48] M. A. Ahmed and M. I. Ebrahim, "Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin," World journal of nano science and engineering, vol. 2014, 2014.
    [49] N. Ihab, "Evaluation the effect of modified nano-fillers addition on some properties of heat cured acrylic denture base material," Journal of Baghdad college of dentistry, vol. 23, no. 3, pp. 23-29, 2011.
    [50] T. Nejatian, A. Johnson, and R. Van Noort, "Reinforcement of denture base resin," in Advances in Science and Technology, 2006, vol. 49: Trans Tech Publ, pp. 124-129.
    [51] P. Harini, K. Mohamed, and T. Padmanabhan, "Effect of Titanium dioxide nanoparticles on the flexural strength of polymethylmethacrylate: An in vitro study," Indian Journal of Dental Research, vol. 25, no. 4, p. 459, 2014.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE