簡易檢索 / 詳目顯示

研究生: 洪啟昌
Hong, Chi-Chang
論文名稱: 次磷酸溶液處理方法之研究 -化學混凝法、吸附法與氧化法
Study on the Treatment of Hypophosphite Solution by Chemical Coagulation、Adsorption and Oxidation
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 133
中文關鍵詞: 鐵氧化物氧化異相芬頓吸附化學混凝
外文關鍵詞: Oxidation, Iron Oxide, Fenton, Heterogeneous, Chemical Coagulation, Adsorption
相關次數: 點閱:68下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對次磷酸探討其處理方法,在化學混凝法與吸附法方面,發現它們對次磷酸的處理效果都不佳;另一方面,它們對亞磷酸與磷酸則有相當好的處理效果。所以,本研究嘗試利用芬頓試劑與鐵氧化物異相催化觸媒來氧化次磷酸,成為亞磷酸與磷酸,再分別以化學混凝法和吸附法將磷去除。
      在化學混凝法方面,研究結果發現於pH4時對亞磷酸與磷酸的處理效果最佳,在1mM磷下,Fe(III)對磷酸莫耳比為1.5時可將磷酸完全去除,對亞磷酸則莫耳比2.0時可達放流水排放標準;在芬頓法氧化次磷酸方面,其最佳操作條件為pH介於2.5~3.0之間,針對1 ~100 mM的次磷酸,試劑莫耳比次磷酸:Fe(II):H2O2 =1:1.5:3下,其去除率可高達99%以上。
      另一方面,本研究嘗試利用覆膜鐵氧化物(B1)為過氧化氫的觸媒來氧化次磷酸,此觸媒是經過實廠流體化床-芬頓(FBR-Fenton)反應槽中製備而成,經由XRD與FTIR的分析研判其為針鐵礦、纖鐵礦與水合鐵礦的混合體,pHzpc為5.38,比表面積為132.4m2/g。其對磷酸的最大吸附量達0.7 mmole/g-B1,而對亞磷酸(pH2.5)與磷酸(pH3)的吸附熱分別為13.1 kJ/mole與16.7 kJ/mole。在異相催化氧化方面,針對pH效應討論其次磷酸氧化率與總磷的去除效變化。論由實驗的結果提出簡化的反應機說明次磷酸的氧化途徑。另外,異相催化氧化1 mM次磷酸的結果顯示,在pH4時,可在五個小時內將次磷酸濃度降到0.1mM以下。

    This study investigated the treatment methods of hypophosphite. We found that neither chemical coagulation nor adsorption could remove hypophosphite from water. On the other hand, they showed excellent removal efficiency in treating phosphite and phosphate. According to these results, we try to treat hypophosphite by Fenton’s reagent or heterogeneous catalyst oxidation. After it is oxidized to phosphite or phosphate it can be easily removed by chemical coagulation or adsorption.
    This investigation reveals that phosphite and phosphate can be easily removed at pH4. The optimum Fe(III) dosages are 2.0 and 1.5 in molar ratio for phosphite and phosphate, respectively. For 1-100 mM hypophosphite, Fenton’s reagent can remove phosphorus almost completely at pH2.5-3.0 with the molar dose of hypophosphite : Fe(II) : H2O2 = 1 : 1.5 : 3. The effects of Fe2+, H2O2, hypophosphite, and solution pH on hypophosphite oxidation are demonstrated in detail. Increasing the dose of iron(II) enhances the hypophosphite oxidation. The optimal levels of H2O2 required for the process are also examined.
    On the other hand, we try to use a novel supported iron oxide (B1), prepared through a fluidized-bed reactor (FBR-Fenton), as a catalyst for the heterogeneous oxidation of hypophosphite. the results of XRD and FTIR show that it is composed of goethite , lepidocrocite and ferrihydrite. The pHzpc of B1 is 5.38 and its specific surface area is 166.1 m2/g by BET analysis. The maximum adsorption capacity of phosphate is 0.7 mmole/g-B1, and the ΔHads is 13.1 kJ/mole for phosphate at pH2.5, and 16.7 kJ/mole for phosphate at pH=3.0. The effect the solution pH on the oxidation of hypophosphite and total phosphorus removal efficiency is elucidated in detail. A simplified mechanism of hypophosphite decomposition that is consistent with the experimental findings is proposed. In addition, result of Fenton like showed that hypophosphite can be oxidized effectively at pH4, it can remove phosphorus to 0.1mM after five hours.

    中文摘要...........................................................................I 英文摘要..........................................................................II 致謝.........................................................................IV 目錄........................................................................VI 圖目錄......................................................................XI 表目錄.....................................................................XIV 第一章 緒論................................................................1 1-1 磷的簡介.................................................................1 1-2 磷的應用.................................................................2 1-3 磷的氫氧化物對環境的影響.................................................4 1-4 研究背景與動機...........................................................6 1-5 本研究目的與內容.........................................................7 第二章 文獻回顧..............................................................8 2-1 水體中除磷技術簡介.......................................................8 2-2 水體中除磷技術之原理....................................................10 2-2-1 化學混凝法之原理......................................................10 2-2-2 吸附法之原理..........................................................12 2-3 水體中除磷技術之文獻回顧................................................18 2-3-1 化學混凝法除磷之文獻回顧..............................................18 2-3-2 吸附法除磷之文獻回顧..................................................19 2-4 高級氧化技術之簡介、原理與文獻回顧......................................21 2-4-1 Homogeneous Fenton Reaction之文獻回顧.................................22 2-4-2 Heterogeneous Fenton-like之文獻回顧...................................25 第三章 實驗設備、材料與方法.................................................32 3-1 實驗架構................................................................33 3-2 Homogeneous Fenton Reaction與化學混凝程序...............................34 3-2-1 實驗藥品..............................................................34 3-2-2 實驗設備..............................................................34 3-2-3 實驗裝置..............................................................35 3-2-4 化學混凝沉澱實驗......................................................35 3-2-5 Homogeneous Fenton Reaction實驗.......................................36 3-3 B1吸附材/觸媒之基本性質鑑定............................................37 3-3-1 比表面積與孔徑分佈....................................................37 3-3-2 表面型態觀察..........................................................37 3-3-3 表面元素分析..........................................................38 3-3-4 晶相分析..............................................................38 3-3-5 化學結構分析..........................................................39 3-3-6 真密度與孔隙率量測....................................................39 3-4 吸附實驗................................................................41 3-4-1 實驗藥品..............................................................41 3-4-2 實驗設備..............................................................41 3-4-3 實驗裝置..............................................................41 3-4-4 恆溫吸附平衡實驗......................................................42 3-4-5 變溫吸附平衡實驗......................................................42 3-4 鐵氧化物異相催化氧化實驗................................................44 3-5-1 實驗藥品..............................................................44 3-5-2 實驗設備..............................................................44 3-5-3 實驗裝置..............................................................45 3-5-4 異相催化氧化實驗......................................................45 第四章 實驗結果與討論.......................................................47 4-1 化學混凝法處理次磷酸、亞磷酸與磷酸實驗..................................49 4-1-1 pH變因................................................................49 4-1-2 FeCl3劑量.............................................................52 4-1-3 FeCl3加藥方式.........................................................55 4-2 Fenton氧化次磷酸實驗....................................................57 4-2-1 pH變因................................................................57 4-2-2 H2O2劑量..............................................................62 4-2-3 FeCl2劑量.............................................................66 4-2-4 次磷酸濃度............................................................69 4-3 鐵氧化物特性分析........................................................72 4-3-1 物理性質分析..........................................................72 4-3-2 表面型態觀察與元素分析................................................75 4-3-3 比表面積與孔隙分布....................................................77 4-3-4 化學結構分析..........................................................79 4-3-5 晶相分析..............................................................80 4-4 吸附實驗................................................................82 4-4-1 pH變因................................................................82 4-4-2 吸附平衡時間的推算....................................................86 4-4-3 最大吸附量實驗........................................................89 4-4-4 吸附模式探討..........................................................91 4-5鐵氧化物異相催化氧化次磷酸..............................................105 4-5-1 背景實驗.............................................................105 4-5-2 pH變因...............................................................110 第五章 結論與建議..........................................................118 5-1 結論...................................................................118 5-1-1 化學混凝法...........................................................118 5-1-2 均相Fenton氧化法.....................................................118 5-1-3 B1觸媒性質分析.......................................................119 5-1-4 吸附法...............................................................119 5-1-5 異相Fenton like氧化法................................................120 5-2 建議...................................................................121 參考文獻...................................................................122 附錄.......................................................................128 自述.......................................................................133

    Adams G.E., Boag J.W., Michael B.D., Reactions of the hydroxyl radical. Part 2. Determination of absolute rate constants, Trans. Faraday Soc., 61, 1417-1424, 1965.
    Ansari A., Peral J., Domenech X., Rafael R.C.,Casado J., Oxidation of S(IV) to S(VI) under Fenton, photo-Fenton and γ-FeOOH photocatalized conditions, 112, 269-276, 1996.
    Adelin L., Stanforth R., Evidence for Surface Precipitation of Phosphate on Geothite, Environ. Sci. Technol., 37, 2694-2700, 2003.
    Barrow N.J., The effects of phosphate on zinc sorption by a soil, Jour. Soil Sci., 38, 453, 1987.
    Cornell R.M. and Schwertmann U., The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Wiley-VCH, New York, 1996.
    Chou Shanshan, Huang Chihpin, Application of a supported oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide, 38, 2719-2731, 1999.
    Elisabetta P., Luca D.P., Carlo M., Oxidation of phosphorus compounds by Fenton’s reagent, Annali di Chemica by Societá Chimica, 2003.
    Eugenia V.J., Phosphorus in Environmental Technologies Principles and Applications, IWA, 2004.
    Fytianos K., Voudtias E., Raikos N.,Modelling of phosphorus removal from aqueous and wastewater samples using ferric iron, Environmental Pollution, 101, 123-130, 1998.
    Gilberg L., Nilsson D., Akesson M., The influence of pH when precipitating orthophosphate with aluminium and iron salts, Proceedings of the 7th Gothenburg Symposium, 95-106, 1996.
    Hayes K.F. and Leckie J.O., Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces, Jour. Colloid and Interface Sci., 115, 564, 1987.
    Hayes K.F., Papelis C.P. and Leckie J.O., Modeling ionic strength effects onanion adsorption at hydrous oxide/solution interfaces, Jour. Colloid and Interface Sci., 125, 717, 1988.
    Jayson G.G., Parsons B.J., Swallow A.J.,Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution .Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter, Jour. Chem. Soc., 169, 1597-607, 1973.
    Kavanaugh M.C., Krejci V., Weber T., Eugster J., Roberts P.V., Phosphorus removal by post-precipitation with Fe(III), Jour. Water Pollution Control Federation, 50, 216-234, 1978.
    Kakarla K.C., Watts R.J., Depth of Fenton-like oxidation in Remediation of Surface Soil, Jour. of Environ. Eng., 123, 11-17, 1997.
    Kong S.H., Watts R.J. Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide, 37, 1473-1482, 1998.
    Kong S.F., Liao C.H., Chen M.C, Pre-oxidation and coagulation of textile wastewater by Fenton process, Chemosphere, 46, 923-928, 2002.
    Kwon K.D., Kubicki J.D., Molecular Orbital theory study on surface complex structures of phosphates to iron hydroxides: Caculation of Vibrational Frequencies and adsorption energies, Langmuir, 20, 9249-9254, 2004.
    Lu M.C., Chen J.N., Chang C.P., Effect of inorganic ions on the oxidation of Dichlorvos insecticide with Fenton’s reagent, Chemosphere, 35, 2285-2293, 1997.
    Luedecke C., Hermanowicz S.W., Jenkins D., Precipitattion of ferric phosphate in activated sludge: a chemical model and its verification, Water Sci. and Technol., 21, 325-337, 1989.
    Li L. and Stanforth R., Distinguishing adsorption and surface precipitation of phosphate on goethite ( -FeOOH), Jour. Colloid Interface Sci., 230, 12, 2000.
    McDowell M.M., Ivey M.M., Lee M.E., Salmassi F.T.M., Khachikian C.S., and Foster K.L., Detection of hypophosphite, phosphate, and orthophosphate in natural geothermal water by ion chromatography, Jour. of chromatography A, 1039, 105-111, 2004.
    Nagaosa Y., Aoyama E., Catalytic oxidation of phosphate and hypophosphite to phosphate on Pd/activated carbon powder, Carbon , 39, 2077-2088, 2001.
    Posselt H.S., Anderson F.J. and Weber W.J.J., Cation sorption on colloidalhydrous manganese dioxide, Environ. Sci. Technol., 2, 1087, 1968.
    Pierri E., Dalas E., The precipitation of ferric phosphate on porous polymer, Colloids and surfaces A, 139, 335-340, 1998.
    Recht H.L., Ghassemi M., Kleber E.V., Precipitation of phosphates from water and wastewater using lanthanum salts, Proc. Adv. Water Pollut. Res. 5th Intl. Conf., 1, 1-17, 1970.
    Ravikumar J.X., Gurol M.D., Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand, Environ. Sci. Technol. 28, pp394-400, 1994.
    Ramesh A., Lee D.J., Adsorption Equilibrium of Heavy Mentals and Dyes from Wastewater with Low-Cost Adsorbents: A Review, Jour. Chin. Inst. Chem. Engrs.,36, 3, 203-222, 2005.
    Scott D.S., Use and production of iron salts for phosphorus removal Research Report NO. 5, Environment Canada, 1973.
    Schaefer K., Asmus K.D., Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions, Jour. Phys. Chem., 84, 2156-2160, 1980.
    Schwertmann U., Gasser U. and Sticher H., Chromium for iron substitution in synthetic goethites, Geochim. Cosmochim. Acta., 53, 1293, 1989.
    Schwertmann U., Cornell R.M., Iron oxides in the laboratory, VCH: Weinheim, Germany, 1991.
    Seida Y., Nakano Y., Removal of phosphate in dissolution-coagulation process of layered double hydroxide, 34, 7, 906-911, 2001.
    Stephan J. H., Olivier L.,Iron-catalyzed oxidation of Arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the fenton reaction, 37, 2734-2742, 2003.
    Tyre B.W., Watts R.J., Miller G.C., Treatment of Four Biorefractory Contaminants in Soil Using Catalyzed Hydrogen Peroxide, Jour. of Environ., 20, 832-838, 1991.
    Valentine R.L., Wang H. Iron Oxide Surface Catalyzed Oxidation of Quinoline by Hydrogen Peroxide, Jour. of Environ. Eng., 124, 31-38, 1998.
    Watts R.J., Udell M.D., Rauch P.A., Treatment of Pentachlorophenol contaminated soil using Fenton’s reagent, Hazardous Waste & Hazardous Materials, 7, 335-345, 1990.
    Watt R.J. Udell M.D., Rauch P.A., Treatment of pentachlorophenol contaiminated soil using fenton’s reagent, Hazardous Waste & Hazardous Materials, 7, 335-345, 1990.
    陳家重, 化學平衡, 科學圖書社, 台北市, 1975.
    楊萬發, 水及廢水處理化學, 茂昌, 台北市, 1987.
    李敏華, 水質化學, 復漢出版社, 台南市, 1992.
    孫嘉福, 駱尚廉, 氧化鐵之特性與應用,自來水會刊雜誌第49 期, pp.47-56, 1994.
    賴進興, 氧化鐵覆膜濾砂吸附過濾水中銅離子之研究, 國立台灣大學環境工程研究所博士論文, 1995.
    周珊珊, 黃耀輝, 黃志彬, 以流體化床觸媒反應槽氧化苯甲酸之研究, 第二十二屆廢水處理研討會論文集, pp.573-581, 1998.
    周珊珊, 覆載型FeOOH流體化床的開發:可行性、反應動力及最適化的研究, 國立交通大學環境工程研究所博士論文, 1992.
    姜曉霞, 沈佛, 化學鍍理論及實踐, 國防工業出版社, 北京, 2000.
    黃任偉, 粒狀氫氧化鐵吸附地下水中砷之研究, 國立成功大學環境工程研究所碩士論文, 2002.
    鐘瑞嬰, 磷酸及重金屬離子在針鐵礦上之吸附平衡, 元智大學化學工程研究所碩士論文, 2002.
    李正得, 不同擔體表面處理程序對氧化鐵覆膜催化效能之影響, 國立交通大學環境工程研究所碩士論文, 2002.
    鄭仲凱, 氫氧化鐵吸附水中砷之動力與平衡研究, 國立成功大學環境工程研究所碩士論文, 2003.
    蘇亮誌, 鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究, 國立成功大學化學工程研究所碩士論文, 2004.

    下載圖示 校內:立即公開
    校外:2005-07-20公開
    QR CODE