| 研究生: |
丁彥晟 Ting, Yen-Cheng |
|---|---|
| 論文名稱: |
鐵和鈰共同添加對Ca3Co4O9的熱電性質之影響 Effect of Fe and Ce Co-doping on the Thermoelectric Properties of Ca3Co4O9 |
| 指導教授: |
許文東
Hsu, Wen-Dung 林士剛 Lin, Shih-Kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 鈣鈷氧349 、熱電 |
| 外文關鍵詞: | Ca3Co4O9, Thermoelectric |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱電(Thermoeletric,TE)材料(Ca2CoO3)(CoO2)Δ(Δ~1.61)可表為Ca3Co3.915¬O¬9+δ¬(δ=0.33)在近幾年已經成為研究TE材料的熱門材料之一。從前人的研究與我們的團隊努力下,對於Ca3Co3.915¬O¬9.33的固溶體形成因素,材料的導電機制以及Seebeck係數(thermopower)有深入的探討,且獲得許多寶貴的成果。對於Ca3Co3.915¬O¬9.33合成方法,本實驗根據前人的作法並加以改良出穩定且較緻密的合成相條件。在TE性質改良方面,是選擇新的方向作摻雜,利用鈰與鐵摻雜於Ca3Co3.915¬O¬9.33中, Ca3-xCexCo3.915-yFey¬O¬9.33系統TE性質。
實驗方法以CaCO3¬、Co3O4、CeO2、Fe2O3四種初始原料,利用化學計量比以固態法製備實驗樣本。根據參考文獻的數據,我們決定將鈰的添加量固定在x=0.1;鐵的添加量為y=0.05、0.1、0.2此三組和純相x=0,y=0做對照,探討純相Ca3Co3.915¬O¬9.33和摻雜鈰與鐵的Ca3-xCexCo3.915-yFey¬O¬9.33系統之TE相關特性的差異。
關鍵字 (中):鈣鈷氧349、熱電
Thermoelectric(TE) (Ca2CoO3)(CoO2)Δ(Δ~1.61) materials can be expressed as Ca3Co3.915¬O¬9+δ¬(δ=0.33),For recent years has become one kind of hot materials for research TE materials.We report the Ca3Co3.915¬O¬9.33 formation factors of solid solution,Seebeck coefficient(thermopower) ,and the conduction mechanism of materials in Ca3Co3.915¬O¬9.33 with in- depth discussion.We obtain valuable results for Ca3Co3.915¬O¬9.33 synthesis method,that the experiment was based on previous practices and to improve the synthesis of a stable and dense phase conditions.For improving the TE propertices of Ca3Co3.915¬O¬9.33,we choose a new direction for the doping .Using cerium and iron doped in Ca3Co3.915¬O¬9.33,and research the Ca3-xCexCo3.915-yFey¬O¬9.33system.
The experimental methods were used CaCO3¬,Co3O4,CeO2 and Fe2O3 four kinds of starting materials, and the use of stoichiometric experiments were prepared by solid state reaction samples. According to reference data, we decided to add the amount of cerium fixed x=0.1; iron addition amount were y=0.05、0.1、0.2 , and then to compara pure phase(x=0,y=0) with the three series .We reach the differences with pure phase Ca3Co3.915¬O¬9.33 and doped cerium and iron Ca3-xCexCo3.915-yFey¬O¬9.33system characteristics of TE propertices.
關鍵字 (英): Ca3Co4O9、Thermoelectric
1. 1834 年法國錶匠 Jean Charles Athanase Peltier 發佈了珀爾帖效應(Peltier Effect)證實了 Seebeck effect 相反效果,此效應是說明不同溫度的交界處上升或下降取決於電流的方向。
2. 朱旭山,「熱電材料與元件之發展與應用」,工業材料雜誌,220 期,第93-103 頁(2005)。
3. 王伊男“奈米碲化鉛之水熱法合成及其火花電漿燒結體性質研究”成功大學材料科學與工程學系 碩士論文(2009)
4. Thermoelectrics Handbook :Macro to Nano, edited by D. M.Rowe,Ph.D.,D.Sc.,Ch3 (2005)
5. 鄢永高,“AgPb<,m>SbTe<,2+m> 類化合物的制備與熱電性能,” 武漢理工大學,博士論文 (2007)
6. R. Moubah1, S. Colis1 etc al “Structural and magnetic properties of layered Ca3Co4O9 thin films” Eur. Phys. J. B 66,315–319 (2008)
7. Paweł Smaczyński & Małgorzata Sopicka-Lizer,etc al “Low temperature synthesis of calcium cobaltites in a solid state reaction” J Electroceram (2007) 18,255–260
8. Chris D.Ling, Karina Aivazian,etc al“Structural investigation of oxygen non-stoichiometry and cation doping in misfit-layered thermoelectric (Ca2CoO3-x)(CoO2)δ,δ~1.61”J.Solid State Chem. 180(2007)1446–1455
9. Ernest M.Levin and Howard F.McMurdie 著 Margie K.Reser編,“Phase Diagrams for Ceramists”Supplement 美國陶瓷協會 (1975)
10. E.Woermann and A.Muan,J.Inorg.Nucl.Chem,32[5]1457(1970)
11. See,e.g., N.W.Ashcroft and N.D.Mermin, Solid State Physics(Holt, Rinehart and Winston, New York, 1976).
12. M. Cutler and N. F. Mott, Phys. Rev. 181, 1336 (1968).
13. Yang Wang, Yu Sui, Peng Ren ,etc al “Strongly Correlated Properties and Enhanced Thermoelectric Response in Ca3Co4-xMxO9 (M=Fe, Mn, and Cu)” Chem. Mater.(2010) 22, 1155–1163
14. B. Fisher, L. Patlagan, G. M. Reisner,etc al“Systematics in the thermopower of electron-doped layered manganites”Phys.Rev. B (2000),61,470.
15. A.H. Harker physics and astronomy “Solid State Physicsfree electron model”6.3.3 experimental results.
16. Luxiang Xu, Fang Li,etc al “High-temperature transport and thermoelectric properties of Ca3Co4−xTixO9”J.Alloys Compd. 501 (2010) 115–119
17. N.W. Ashcroft, N.D. Mermin, Solid State Physics, Holt Saunders, Philadelphia,PA, 1976.
18. Yang Wang, Yu Sui, Jinguang Cheng,“Doping-Induced Metal -Insulator Transition and the Thermal Transport Properties in Ca3-xYxCo4O9”J. Phys. Chem.(2010) 114, 5174–5181
19. D.Li, X.Y.Qin, Y.J.Gu, “Electrical transport behavior of Ca3MnxCo4−xO9(0≦x≦1.28)at low temperatures”J.APPL. PHYS. 99, 053709 (2006)
20. B. C. Zhao, Y. P. Sun,etc al “Enhanced spin fluctuations in Ca3Co4−xTixO9 single crystals” PHYS.REV. B 74, 144417 (2006).
21. R.R. Heikes and R.W. Ure, Jr., Thermoelectricity: Science and Engineering (Interscience Publishers, New York-London, 1961).
22. W. Koshibae, K. Tsutsui, and S. Maekawa,“Thermopower in cobalt oxides”, Phys. Rev. B 62, 6869 (2000).
23. W. Koshibae and S. Maekawa, Phys. Rev. Lett. 87, 236603 (2001).
24. G.D.Tang, Z.H.Wang,etc al“Evidence of spin-density-wave transition and enhanced thermoelectric properties in Ca3−xCexCo4O9+δ”J.APPL.PHYS. 107,053715 (2010)
25. P.M. Chaikin and G. Beni, Phys. Rev. B 13, 647 (1976).
26. A. Oguri and S. Maekawa, Phys. Rev. B 41, 6977 (1990)
27. D.B. Marsh and P.E. Parris, Phys. Rev. B 54, 7720 (1996); ibid.54, 16 602 (1996).
28. G. Pa´lsson and G. Kotliar, Phys. Rev.Lett. 80, 4775 (1998).
29. J. Merino and R.H. McKenzie, Phys. Rev. B 61, 7996 (2000).
30. P. H Joseph., C. M. Thrush, and T. M .Donald,“Thermopower enhancement in lead telluride nanostructures,”Physical review B, 70, 115334 (2004)
31. D. M. Rowe,“CRC Handbook of Thermoelectrics,” Ch7 (Boca
Raton, 1994)
32. Ryoji Asahi, Jun Sugiyama,etc al“Electronic structure of misfit-layered calcium cobaltite”PHYS. REV. B 66,155103 (2002).
33. Chia-Jyi Liu, Li-Chen Huang,etc al“Improvement of the thermoelectric characteristics of Fe-doped misfit-layered Ca3Co4−xFexO9+δ(x=0,0.05,0.1,and0.2)” APPL. PHYS. LETT. 89,204102 (2006)
34. 蔡豐欽,“熱傳遞,”高立圖書有限公司,1992
35. Jack P.Holman, “Heat Transfer,”McGraw-HillEducation,9th ed.,2002
36. 施閔華 “微奈米尺度薄膜熱傳現象之研究”國立中央大學機械工程學系 碩士論文(2003)
37. Tzou, D. Y., Macro-to Microscale Heat Transfer,Taylor and Franics,Washington, DC.,1996
38. 劉貞秀 “熱傳導係數量測之研究”國立成功大學工程科學系 碩士論文(2008)
39. B.J.Filla, “A steady-state high temperature apparatus for measuring thermal conductivity of ceramics ,”Rev.Sci.In.68 (1997) 2822-2829
40. S.E.Gusafsson, “Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials,”Rev.Sci.IN.62(1991)797-804
41. Hot DiskTM Thermal Constants Analyzer Model TPS 2500
42. M. Gustavsson, E. Karawacki, and S.E. Gustafsson, Rev. Sci. Instru., 65(12), 3856 (1994)
43. T. Log and S.E. Gustafsson, Fire and Materials, 19(1), 43 (1995).
44. V. Bohac, M.K. Gustafsson, L. Kubicar, and S.E. Gustafsson, Rev. Sci. Instru., 71(6), 2452 (2000).
45. Hot Disk Thermal Constants Analyzer Instruction Manual, Mathis Instruments, Ltd., Fredericton, New Brunswick,Canada (2001).
46. Transient Plane Source-Gustafsson Hot Disk Technique, standards for Contact Transient Measurements of Thermal Properties. National Physical Laboratory, United Kingdom, accessed February 2006
47. Y. He, Thermochimica Acta, 436, 122 (2005) Chaps. 3 Oxford University Press, 1993
48. M. J. Burns and P.M. Chaikin,J.Phys.C 18,L743 (1985)
49. N. F. Mott, Conduction in Non-Crystalline Materials, 2nd ed.(Oxford University Press, Oxford, 1993), Chap. 3.
50. N.V. Nong, Chia-Jyi Liu, M. Ohtaki Journal of Alloys and Compounds 509 (2011) 977–981
51. G. D. Tang, X. N. Xu, C. P. Tang, Z. H. Wang, Y. He, L. Qiu, L. Y. Lv, L. Xing and Y. W. Du EPL, 91 (2010) 17002
52. Yayu Wang, Nyrissa S. Rogado, R. J. Cava & N. P. Ong NATURE |VOL 423 | 22 MAY 2003 |
53. G. Yang, Q. Ramasse, and R. F. Klie PHYSICAL REVIEW B 78, 153109 _2008_
校內:2016-09-05公開