簡易檢索 / 詳目顯示

研究生: 蔣政澔
Chiang, Cheng-Hao
論文名稱: 自働生產管理環之發展與應用-以光學眼鏡製造為例
The Development and Application of Jidoka-JIT Cycle System-Case of Optical Glasses Manufacturing
指導教授: 楊大和
Yang, Ta-Ho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 124
中文關鍵詞: 價值流程圖 4.0自働生產管理環資訊浪費順序生產目視管理
外文關鍵詞: Value Stream Mapping 4.0, Jidoka-JIT Cycle, Information Waste, Sequential production, Visual Management
相關次數: 點閱:114下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中小企業對全球與台灣經濟發展有高度貢獻與重要性,但隨著數位化與工業4.0的興起,中小企業與半導體產業相較之下,中小企業較無法投入大量的資金與資源來導入大數據、人工智慧、物聯網等新興技術,但各企業為了提升其資訊化的程度,皆會導入企業資源規劃(Enterprise Resource Planning , ERP)、現場生產控制(Shop Floor Tracking, SFT)等套裝資訊軟體來輔助現場管理,並期望各製程能按照先進先出(First In First Out, FIFO)的順序進行生產。
    在實際的製造現場中,由於ERP、SFT等套裝軟體的格式、所能呈現的資訊都是固定的,使得製造現場仍無法按照FIFO的順序進行生產,以本案例光學眼鏡製造公司為例,案例現況已導入ERP、SFT等套裝資訊,但在實際的製造現場中,由於時常會遇到材料齊料、委外加工等眾多限制,導致套裝軟體無法實際滿足各企業現場的實際需求,造成當前軟體提供的資訊未被充分利用及需要許多額外的人工作業,為了能有效的解決上述問題,本研究將透過結合精實生產及工業4.0,強調以易取得的數位工具,運用智慧製造三要素建立出複雜度適中的智慧化系統來支持TPS的兩大支柱並持續進行改善,而此改善循環又稱為自働生產管理環(Jidoka-JIT Cycle, JJC)。
    本研究在實際的改善實施上,會先在精實理念之下利用價值流程圖4.0 (Value Stream Mapping 4.0, VSM 4.0)針對案例公司各製程進行現況分析,再利用JJC的概念根據案例公司各製程的需求分別建構出精實資訊系統來輔助現場管理,並使得案例公司得以按順序生產,同時藉由資料可用率、資料使用率、數位化比率、資訊作業流程時間(Process Time)、資訊作業流程所需步驟、因資料交換、人員參與產生之節點數量、生產時間(Lead Time)等七項績效指標來驗證改善成效,導入系統後可由研究結果得知案例公司整體資訊作業流程時間降低了40.6%;整體資訊作業流程步驟減少了12.5%;整體節點數量減少了36.84%;整體生產時間降低了8.68%,以此證明中小企業在數位轉型的過程中,資訊流程的改善與按順序生產的重要性。

    Small and medium-sized enterprises have made an extremely important contribution to the global and Taiwan economic development, but with the rise of digitalization and Industry 4.0, the semiconductor industry, small and medium-sized enterprises are less able to invest a lot of funds and resources to import big data , artificial intelligence, Internet of things and other emerging technologies. In order to improve the degree of informatization, each enterprise will introduce Enterprise resource planning(ERP), Shop Floor Tracking(SFT) and other packaged information software to assist on-site management, and expect each process to be produced in the order of First-in-First-Out (FIFO).
    On the actual manufacturing field, the fixed format and information that can be presented by packaged software such as ERP and SFT, which the manufacturing field still cannot follow the order of FIFO to manufacturing. Take the optical glasses manufacturing company for example, At present, package software like ERP and SFT has been imported, but on the actual manufacturing field, many restrictions are always caused by outsourcing , material shortage, and different processing sequences, which the package software cannot actually meet the actual conditions of each manufacturing field’s demand. This caused not only the information provided by the current software to be underutilized, but also made the manufacturing field still require a lot of extra manual work.
    In order to effectively solve the above problems, this study will combine lean production and Industry 4.0, emphasizing easy-to-obtain digital tools, and use the three elements of smart manufacturing to establish an intelligent system with moderate complexity to support the two pillars of TPS and Continuous improvement, and this improvement cycle is also called Jidoka-JIT Cycle.
    In terms of the actual implementation of improvement, this study will first use Value Stream Mapping 4.0 to analyze the current situation of each process of the case company under the lean concept, and then use the concept of JJC to construct a lean information system according to the needs of each process of the case company to assist on-site management, and enable the case company to produce in sequence. At the same time, to verify the improvement effect through data availability, data usage, digitization ratio, Process time, steps required for information operation process, and number of nodes generated and personnel participation, Lead time caused by data exchange performance indicators. After the system is imported, the research results show that the overall Process Time of the case company has been reduced by 40.6%; the overall information operation process steps have been reduced by 12.5%; the overall number of nodes has been reduced by 36.84%; the overall Lead Time has been reduced by 8.68%, which prove that the improvement of information flow and sequential production are important process for small and medium-sized enterprises to transform in digital industries.

    目錄 vii 圖目錄 x 表目錄 xiii 1 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 研究範圍與限制 4 1.4 研究流程 5 2 文獻探討 6 2.1 精實生產 6 2.2 工業4.0 7 2.3 精實4.0 9 2.3.1 精實資訊管理 9 2.3.2 目視化管理 11 2.3.3 ERP套裝軟體的限制 13 2.3.4 數位化帶來的 TPS 改善機會 13 2.3.5 自働生產管理環(Jidoka-JIT Cycle, JJC) 17 2.4 VSM 4.0 19 3 產業背景與案例說明 21 3.1 光學眼鏡製造之產業 21 3.2 案例公司背景 22 3.3 案例公司之生產製造流程 23 3.4 案例公司欲改善之生產關鍵製程 24 3.5 案例公司轉型階段 24 3.6 案例公司現況問題描述 25 3.6.1 案例公司尚未導入JJC系統之現況 25 3.6.2 JJC主系統介紹 27 3.6.3 案例公司導入JJC系統後現況 27 3.6.4 案例公司現況分析 27 4 研究方法 30 4.1 後處理製程改善 31 4.1.1 後處理價值流圖分析4.0 31 4.1.2 精實資訊系統建構 36 4.1.3 後處理價值流設計4.0 43 4.2 噴漆製程改善 44 4.2.1 噴漆價值流圖分析4.0 44 4.2.2 精實資訊系統實踐 48 4.2.3 噴漆價值流圖設計4.0 55 4.3 配件製程改善 56 4.3.1 配件價值流圖分析4.0 56 4.3.2 精實資訊系統實踐 61 4.3.3 配件價值流圖設計4.0 69 4.4 齊料區改善 70 4.4.1 齊料價值流圖分析4.0 70 4.4.2 精實資訊系統實踐 74 4.4.3 齊料價值流圖設計4.0 81 4.5 組裝製程改善 82 4.5.1 組裝價值流圖分析4.0 82 4.5.2 精實資訊系統實踐 86 4.5.3 組裝價值流圖設計4.0 94 5 實證分析 95 5.1 績效指標介紹 95 5.2 各製程改善成效 97 5.2.1 後處理製程改善成效 97 5.2.2 噴漆製程改善成效 102 5.2.3 配件製程改善成效 107 5.2.4 齊料區改善成效 112 5.2.5 組裝製程改善成效 114 5.3 整體改善成效 119 5.3.1 各製程資訊作業流程時間改善前後差異 119 5.3.2 各製程資訊作業流程所需步驟改善前後差異 119 5.3.3 各製程因資料交換、人員參與產生之節點數量改善前後差異 120 5.3.4 各製程生產時間改善前後差異 120 6 結論與建議 121 6.1 研究結論 121 6.2 未來建議 121 參考文獻 ˙123

    大野耐一(2011),《追求超脫規模的經營:大野耐一談豐田生產方式》,財團法人中衛發展中心,臺北市。
    王翔(2022),價值流方法4.0之應用與執行-以光學眼鏡製造為例,國立成功大學製造資訊與系統研究所碩士論文,臺南。
    國立中央大學管理學院ERP中心(2015),《ERP企業資源規劃導論》,碁峰,臺北。
    楊大和&李兆華(2021),精實管理4.0之自働生產管理環,工業工程雜誌,(取得日期:2023年2月16日),[available at https://reurl.cc/bER3vo]
    經濟部統計處(2023),「工業產銷存價值統計調查」,(取得日期:2023年2月13日),[https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx]
    Bartoszewicz, G., & Wdowicz, M. (2019). Automation of the process of reporting the compliance of the production plan with its execution based on integration of SAP ERP system in connection with Excel spreadsheet and VBA application. Digitalization of Supply Chains, 101-116.
    Hagedorn-Hansen, D., Hagedorn-Hansen, E., & Oosthuizen, G. A. (2016). Resource efficient process chain strategies for global competitive manufacturers. International Association for Management of Technology, 1-11.
    Hicks, B.J. (2007). Lean information management: Understanding and eliminating waste. International Journal of Information Management, 27, 233–249.
    Jaca, C., Viles, E., Jurburg, D., & Tanco, M. (2014). Do companies with greater deployment of participation systems use Visual Management more extensively? An exploratory study. International Journal of Production Research, 52(6), 1755-1770.
    Jo, J., Huh, J., Park, J., Kim, B., & Seo, J. (2014). LiveGantt: Interactively visualizing a large manufacturing schedule. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2329-2338.
    Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendation for implementing the strategic initiative Industrie 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion.
    Koskela, L., Tezel, A. & Tzortzopoulos, P. (2018), “Why visual management?”, In 26th Annual Conference of the International Group for Lean Construction, 250-260.
    Lewis, T. (2014). New Record for Human Brain: Fastest Time to See an Image. LIVESCIENCE, (Date of acquisition: June 12, 2022), [available at https://www.livescience.com/42666-human-brain-sees-images-record-speed.html]
    Meudt, T., Metternich, J., & Abele, E. (2017). Value stream mapping 4.0: Holistic examination of value stream and information logistics in production. CIRP Annals, 66(1), 413-416.
    Rauen, H., Mosch, C., & Prumbohm, F. (2018). Industrie 4.0 Meets Lean, VDMA, Frankfurt, Germany.
    Schuh, G., Anderl, R., Dumitrescu, R., Krüger, A., & Hompel, M. (2020). Industrie 4.0 Maturity Index Managing the Digital Transformation of Companies, acatech STUDIE, München, Germany.
    Senkuviene, I., Jankauskas, K., & Kvietkauskas, H. (2014). Using manufacturing measurement visualization to improve performance. Mechanical Technologies, 20, 99-107.
    Soares, S., & Teixeira, L. (2014). Lean information management in industrial context: an experience based on a practical case. International Journal of Industrial Engineering and Management, 5(2), 107-114.
    Steenkamp, L. P., Hagedorn-Hansen, D., & Oosthuizen, G. A. (2017). Visual management system to manage manufacturing resources. Procedia Manufacturing, 8, 455-462.
    Toyota. (2001). Corporate Philosophy Toyota Way 2001. Retrieved from http://www.toyota-global.com/company/history_of_toyota/75years/data/conditions/philosophy/toyotaway2001.html
    Womack, J., Jones, D. T., & Roos, D. (1990). The Machine that Changed the World. New York: Rawson Associates.
    Womack, J. (2004). Lean Information Management, Lean Enterprise Institute, (Date of acquisition: June 12, 2022), [available at https://www.lean.org/the-lean-post/articles/lean-information-management/]

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE