| 研究生: |
黃弘仁 Huang, Hung-Jen |
|---|---|
| 論文名稱: |
以液相層析質譜儀作蛋白質體學與代謝體學的研究 Proteomic and Metabolomic Studies Using Liquid Chromatography-Mass Spectrometry |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 二甲基標定 、肝微粒體 、雌激素 、代謝物 、選擇反應監測 、雌激素化 |
| 外文關鍵詞: | dimethyl labeling, liver microsome, CYP450, Estrogen, metabolic, selective reaction monitoring (SRM), estrogenylation |
| 相關次數: | 點閱:108 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液相層析質譜已成為主要研究蛋白質體學和代謝的工具。本論文中,液相層析質譜應用於進行三個蛋白質體學和代謝研究:一、大鼠肝微粒體酵素及其亞型的性別-相關差異表現(第二章)。 二、定量分析乳癌細胞之內源性雌激素及其代謝產物(第三章)。 三、兒茶酚雌激素代謝物修飾蛋白質(第四章)。這些研究為新的假說在雌激素作用上為帶來線索。
在第二章中,我們採用散彈槍定量蛋白質體學方法加上穩定同位素二甲基標定,二維逆相勝肽的分離和串聯質譜(MS)探討大鼠肝微粒體蛋白之性別差異表現。結果總共391個蛋白質被鑑定與定量,其中56%的蛋白質是酵素。我們確定了53個亞型,其中包括21個 CYP450的亞型。經由定量和統計評估,我們歸類出28酵素為公的在數量上佔優勢、21酵素為母的在數量上佔優勢,以及125性別無關的酵素。進一步以質譜分析雄性和雌性大鼠之催化速率,可證實雄性和雌性大鼠在CYP2D1的表現上有約30%的差異。
在第三章中,我們報導了定量液相層析串聯質譜法,經由簡單的乙酸乙酯萃取和丹磺酰氯衍生化後,利用選擇性反應監測分析MCF - 7乳癌細胞之雌激素和雌激素代謝物在細胞外和細胞內的含量。結果顯示,未經處理的條件下,微量的雌酮和雌二醇(<0.9 x10-15克/細胞)同時存在於細胞外和細胞內,但二甲基亞碸可誘導細胞產生微量的雌酮和雌二醇(<2.25 x10-15克/細胞)。經雌二醇處理,不僅大大增加雌酮和雌二醇在細胞內的量(60 x10-15克/細胞)和細胞外的量(3000 x10-15克/細胞),細胞外代謝物的量也大幅增加(0.6至25x10-15克/細胞)。這些數據暗示,MCF - 7乳腺癌細胞以雌二醇處理24小時後,雌激素代謝物可以迅速生成並排到細胞外,而二甲基亞碸溶劑可能引起輕微的雌激素作用。
在第四章中,我們進行了質譜為基礎的研究,系統地探討兒茶酚雌激素與氨基酸、勝肽和蛋白質在生物條件下的反應。我們稱此類蛋白被修飾上兒茶酚雌激素現象為蛋白質雌激素化。我們發現,活化的兒茶酚雌激素可以很容易與含有親核性官能基之氨基酸 (例如離氨酸,組氨酸和半胱氨酸)進行Michael addition。利用一次質譜和二次質譜在CID解離或ETD解離(ETD)條件下,我們確認,活化的兒茶酚雌激素與在勝肽上的離氨酸,組氨酸和半胱氨酸殘基反應,但其他殘基則未被發現。我們也發現了蛋白質可在生物緩衝條件下被雌激素化。而且確定生物樣品中蛋白質雌激素化的研究將持續進行。
Liquid chromatography-mass spectrometry (LC-MS) has become the major tool for proteomic and metabolic studies. In this thesis, LC-MS was applied to conduct three proteomic and metabolic studies: 1. Gender-dependent differential expression of rat microsomal enzymes and their isoforms. (Chapter two) 2. Quantitative analysis of endogenous estrogens and their metabolites in breast cancer cells. (Chapter three) 3. Protein modification by catechol estrogen metabolites. (Chapter four) These investigations shed lights into novel hypotheses for estrogen action.
In chapter two, we applied quantitative shotgun proteomics approach coupled with stable isotope dimethyl labeling, two-dimensional reversed-phase peptide separation and tandem mass spectrometry (MS) to explore the gender-dependent expression of rat liver microsomal proteins. A total of 391 proteins were identified and quantified by this approach, and 56% of quantified proteins were enzymes. We identified 53 isoforms including 21 isoforms of CYP450s. By quantitative and statistics assessment, we were able to classify them into 28 male dominant enzymes and 21 female dominant enzymes; and 125 sex independent enzymes. The catalyzing rate of CYP2D1 was further proved to exhibit significant differences between male and female rats by MS analyses.
In chapter three, we reported a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method utilizing selective reaction monitoring (SRM) to analyze estrogens and estrogen metabolites in the extracellular and intracellular compartments of endogenous MCF-7 breast cancer cells through simple ethyl acetate (EA) extraction and dansyl chloride derivatization. Results indicate that trace amounts (<0.9 fg/cell) of E1 and E2 were present in both the extra- and intra-cellular compartments under non-treated condition but DMSO could induce formation of E1 and E2 as well as trace amounts (<2.25 fg/cell) of EMs in the cell. E2 treatment substantially increased not only E1 and E2 in the intra-cellular (60 fg/cell) and extra-cellular (3000 fg/cell) compartment but also substantially induced EMs primarily in the extracellular compartment (0.6 to 25 fg/cell). These data implied that EMs could be quickly generated and distributed to the extracellular compartment by E2 within 24 hour of treatment and DMSO solvent could potentially induce slight estrogen effects.
In chapter four, we conducted a MS-based study to systematically investigate the reactivity of catechol estrogens towards aminoacids, peptides, and proteins under biological conditions. We term such protein modifications by catechol estrogens as protein estrogenylation. We found the activated catechol estrogens could readily react with amino acids of lysine, histidine, and cysteine which contain nucleophilic functional groups via Michael addition. Using MS and MSMS under collision induced dissociation (CID) and electron transfer dissociation (ETD), we confirmed that the activated 4-OHE2 reacts with lysine, histidine, and cysteine residues on a synthetic peptide but not on other residues. We had also detected protein estrogenylation under biological buffer conditions. Studies to identify protein estrogenylation in biological samples will be conducted in the future.
Reference cited in chapter 1
[1] Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246:64-71.
[2] Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60:2299-301.
[3] Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551-67.
[4] Eng JK, Mccormack AL, Yates JR. An Approach to Correlate Tandem Mass-Spectral Data of Peptides with Amino-Acid-Sequences in a Protein Database. J Am Soc Mass Spectr. 1994;5:976-89.
[5] Chalkley RJ, Baker PR, Huang L, Hansen KC, Allen NP, Rexach M, et al. Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer: II. New developments in Protein Prospector allow for reliable and comprehensive automatic analysis of large datasets. Mol Cell Proteomics. 2005;4:1194-204.
[6] Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, et al. Open mass spectrometry search algorithm. J Proteome Res. 2004;3:958-64.
[7] Yan W, Chen SS. Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic. 2005;4:27-38.
[8] Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17:994-9.
[9] Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3:1154-69.
[10] Mirgorodskaya OA, Kozmin YP, Titov MI, Korner R, Sonksen CP, Roepstorff P. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. Rapid Commun Mass Spectrom. 2000;14:1226-32.
[11] Conrads TP, Alving K, Veenstra TD, Belov ME, Anderson GA, Anderson DJ, et al. Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal Chem. 2001;73:2132-9.
[12] Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1:376-86.
[13] Daviss B. Growing pains for metabolomics. Scientist. 2005;19:25-8.
[14] Jordan KW, Nordenstam J, Lauwers GY, Rothenberger DA, Alavi K, Garwood M, et al. Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum. 2009;52:520-5.
[15] Bidlingmaier S, Liu B. Interrogating yeast surface-displayed human proteome to identify small molecule-binding proteins. Mol Cell Proteomics. 2007;6:2012-20.
References cited in chapter 2
[1] Hines RN, Koukouritaki SB, Poch MT, Stephens MC. Regulatory polymorphisms and their contribution to interindividual differences in the expression of enzymes influencing drug and toxicant disposition. Drug Metab Rev. 2008;40:263-301.
[2] Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol. 2007;47:566-78.
[3] Murray M. Role of signalling systems in the effects of dietary factors on the expression of mammalian CYPs. Expert Opin Drug Metab Toxicol. 2007;3:185-96.
[4] Anderson GD. Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin Pharmacokinet. 2005;44:989-1008.
[5] Mann HJ. Drug-associated disease: cytochrome P450 interactions. Crit Care Clin. 2006;22:329-45, vii.
[6] Szyf M. The dynamic epigenome and its implications in toxicology. Toxicol Sci. 2007;100:7-23.
[7] Cotreau MM, von Moltke LL, Greenblatt DJ. The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin Pharmacokinet. 2005;44:33-60.
[8] Kennedy M. Hormonal regulation of hepatic drug-metabolizing enzyme activity during adolescence. Clin Pharmacol Ther. 2008;84:662-73.
[9] Shapiro BH, Agrawal AK, Pampori NA. Gender differences in drug metabolism regulated by growth hormone. Int J Biochem Cell Biol. 1995;27:9-20.
[10] Tanaka E. Gender-related differences in pharmacokinetics and their clinical significance. J Clin Pharm Ther. 1999;24:339-46.
[11] Scandlyn MJ, Stuart EC, Rosengren RJ. Sex-specific differences in CYP450 isoforms in humans. Expert Opin Drug Metab Toxicol. 2008;4:413-24.
[12] Waxman DJ, Chang TKH. Chapter 9 of Cytochrome P450: Structure, Mechanism, and Biochemistry. 3e ed: New York; 2005.
[13] Galeva N, Altermann M. Comparison of one-dimensional and two-dimensional gel electrophoresis as a separation tool for proteomic analysis of rat liver microsomes: cytochromes P450 and other membrane proteins. Proteomics. 2002;2:713-22.
[14] Galeva N, Yakovlev D, Koen Y, Duzhak T, Alterman M. Direct identification of cytochrome P450 isozymes by matrix-assisted laser desorption/ionization time of flight-based proteomic approach. Drug Metab Dispos. 2003;31:351-5.
[15] Nisar S, Lane CS, Wilderspin AF, Welham KJ, Griffiths WJ, Patterson LH. A proteomic approach to the identification of cytochrome P450 isoforms in male and female rat liver by nanoscale liquid chromatography-electrospray ionization-tandem mass spectrometry. Drug Metab Dispos. 2004;32:382-6.
[16] Lane CS, Nisar S, Griffiths WJ, Fuller BJ, Davidson BR, Hewes J, et al. Identification of cytochrome P450 enzymes in human colorectal metastases and the surrounding liver: a proteomic approach. Eur J Cancer. 2004;40:2127-34.
[17] Kanaeva IP, Petushkova NA, Lisitsa AV, Lokhov PG, Zgoda VG, Karuzina II, et al. Proteomic and biochemical analysis of the mouse liver microsomes. Toxicology in Vitro. 2005;19:805-12.
[18] Petushkova NA, Kanaeva IP, Lisitsa AV, Sheremetyeva GF, Zgoda VG, Samenkova NF, et al. Characterization of human liver cytochromes P450 by combining the biochemical and proteomic approaches. Toxicology in Vitro. 2006;20:966-74.
[19] Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis. 2000;21:1054-70.
[20] Wang Y, Al-Gazzar A, Seibert C, Sharif A, Lane C, Griffiths WJ. Proteomic analysis of cytochromes P450: a mass spectrometry approach. Biochem Soc Trans. 2006;34:1246-51.
[21] Seibert C, Davidson BR, Fuller BJ, Patterson LH, Griffiths WJ, Wang Y. Multiple-approaches to the identification and quantification of cytochromes P450 in human liver tissue by mass spectrometry. J Proteome Res. 2009;8:1672-81.
[22] Lane CS, Wang Y, Betts R, Griffiths WJ, Patterson LH. Comparative cytochrome P450 proteomics in the livers of immunodeficient mice using 18O stable isotope labeling. Mol Cell Proteomics. 2007;6:953-62.
[23] Jia N, Liu X, Wen J, Qian L, Qian X, Wu Y, et al. A proteomic method for analysis of CYP450s protein expression changes in carbon tetrachloride induced male rat liver microsomes. Toxicology. 2007;237:1-11.
[24] Jenkins RE, Kitteringham NR, Hunter CL, Webb S, Hunt TJ, Elsby R, et al. Relative and absolute quantitative expression profiling of cytochromes P450 using isotope-coded affinity tags. Proteomics. 2006;6:1934-47.
[25] Yu AM, Qu J, Felmlee MA, Cao J, Jiang XL. Quantitation of human cytochrome P450 2D6 protein with immunoblot and mass spectrometry analysis. Drug Metab Dispos. 2009;37:170-7.
[26] Alterman MA, Kornilayev B, Duzhak T, Yakovlev D. Quantitative analysis of cytochrome p450 isozymes by means of unique isozyme-specific tryptic peptides: a proteomic approach. Drug Metab Dispos. 2005;33:1399-407.
[27] Hsu JL, Huang SY, Chow NH, Chen SH. Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem. 2003;75:6843-52.
[28] Omura T, Sato R. The Carbon Monoxide-Binding Pigment of Liver Microsomes. I. Evidence for Its Hemoprotein Nature. J Biol Chem. 1964;239:2370-8.
[29] Harris DC. Quantitative Chemical Analysis. p. 61.
[30] Umehara K, Kudo S, Odomi M. Involvement of CYP2D1 in the metabolism of carteolol by male rat liver microsomes. Xenobiotica. 1997;27:1121-9.
[31] Morgan ET, MacGeoch C, Gustafsson JA. Hormonal and developmental regulation of expression of the hepatic microsomal steroid 16 alpha-hydroxylase cytochrome P-450 apoprotein in the rat. J Biol Chem. 1985;260:11895-8.
[32] Waxman DJ, Ram PA, Pampori NA, Shapiro BH. Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate. Mol Pharmacol. 1995;48:790-7.
[33] Wiwi CA, Gupte M, Waxman DJ. Sexually dimorphic P450 gene expression in liver-specific hepatocyte nuclear factor 4alpha-deficient mice. Mol Endocrinol. 2004;18:1975-87.
[34] Shimada M, Murayama N, Yamazoe Y, Hashimoto H, Ishikawa H, Kato R. Age- and sex-related alterations of microsomal drug- and testosterone-oxidizing cytochrome P450 in Sprague-Dawley strain-derived dwarf rats. J Pharmacol Exp Ther. 1995;275:972-7.
[35] Agrawal AK, Shapiro BH. Constitutive and inducible hepatic cytochrome P450 isoforms in senescent male and female rats and response to low-dose phenobarbital. Drug Metab Dispos. 2003;31:612-9.
[36] Zhang L, Liu Q, Zhou Y, Zhang Y. Baculo-expression and enzymatic characterization of CES7 esterase. Acta Biochim Biophys Sin (Shanghai). 2009;41:731-6.
[37] Srivastava PK, Waxman DJ. Sex-dependent expression and growth hormone regulation of class alpha and class mu glutathione S-transferase mRNAs in adult rat liver. Biochem J. 1993;294 ( Pt 1):159-65.
[38] Aida K, Moore R, Negishi M. Cloning and nucleotide sequence of a novel, male-predominant carboxylesterase in mouse liver. Biochim Biophys Acta. 1993;1174:72-4.
[39] Garcia MC, Thangavel C, Shapiro BH. Epidermal growth factor regulation of female-dependent CYP2A1 and CYP2C12 in primary rat hepatocyte culture. Drug Metab Dispos. 2001;29:111-20.
[40] Ahluwalia A, Clodfelter KH, Waxman DJ. Sexual dimorphism of rat liver gene expression: regulatory role of growth hormone revealed by deoxyribonucleic Acid microarray analysis. Mol Endocrinol. 2004;18:747-60.
[41] Quintanilla ME, Tampier L, Sapag A, Gerdtzen Z, Israel Y. Sex differences, alcohol dehydrogenase, acetaldehyde burst, and aversion to ethanol in the rat: a systems perspective. Am J Physiol Endocrinol Metab. 2007;293:E531-7.
[42] Verma AS, Shapiro BH. Sex-dependent expression of seven housekeeping genes in rat liver. J Gastroenterol Hepatol. 2006;21:1004-8.
[43] Buckley DB, Klaassen CD. Tissue- and gender-specific mRNA expression of UDP-glucuronosyltransferases (UGTs) in mice. Drug Metab Dispos. 2007;35:121-7.
References cited in chapter 3
[1] Clemons M, Goss P. Estrogen and the risk of breast cancer. N Engl J Med. 2001;344:276-85.
[2] Henderson BE, Ross R, Bernstein L. Estrogens as a cause of human cancer: the Richard and Hinda Rosenthal Foundation award lecture. Cancer Res. 1988;48:246-53.
[3] Lewis JS, Thomas TJ, Klinge CM, Gallo MA, Thomas T. Regulation of cell cycle and cyclins by 16alpha-hydroxyestrone in MCF-7 breast cancer cells. J Mol Endocrinol. 2001;27:293-307.
[4] Russo IH, Russo J. Role of hormones in mammary cancer initiation and progression. J Mammary Gland Biol Neoplasia. 1998;3:49-61.
[5] Ball P, Knuppen R. Catecholoestrogens (2-and 4-hydroxyoestrogens): chemistry, biogenesis, metabolism, occurrence and physiological significance. Acta Endocrinol Suppl (Copenh). 1980;232:1-127.
[6] Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis. 1998;19:1-27.
[7] Fishman J, Martucci C. Biological properties of 16 alpha-hydroxyestrone: implications in estrogen physiology and pathophysiology. J Clin Endocrinol Metab. 1980;51:611-5.
[8] Swaneck GE, Fishman J. Covalent binding of the endogenous estrogen 16 alpha-hydroxyestrone to estradiol receptor in human breast cancer cells: characterization and intranuclear localization. Proc Natl Acad Sci U S A. 1988;85:7831-5.
[9] Albin N, Massaad L, Toussaint C, Mathieu MC, Morizet J, Parise O, et al. Main drug-metabolizing enzyme systems in human breast tumors and peritumoral tissues. Cancer Res. 1993;53:3541-6.
[10] Cheng Z, Rios GR, King CD, Coffman BL, Green MD, Mojarrabi B, et al. Glucuronidation of catechol estrogens by expressed human UDP-glucuronosyltransferases (UGTs) 1A1, 1A3, and 2B7. Toxicol Sci. 1998;45:52-7.
[11] Falany JL, Falany CN. Expression of cytosolic sulfotransferases in normal mammary epithelial cells and breast cancer cell lines. Cancer Res. 1996;56:1551-5.
[12] Ritter JK, Chen F, Sheen YY, Lubet RA, Owens IS. Two human liver cDNAs encode UDP-glucuronosyltransferases with 2 log differences in activity toward parallel substrates including hyodeoxycholic acid and certain estrogen derivatives. Biochemistry. 1992;31:3409-14.
[13] Tenhunen J, Salminen M, Lundstrom K, Kiviluoto T, Savolainen R, Ulmanen I. Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem. 1994;223:1049-59.
[14] Zacharia LC, Dubey RK, Jackson EK. A gas chromatography/mass spectrometry assay to measure estradiol, catecholestradiols, and methoxyestradiols in plasma. Steroids. 2004;69:255-61.
[15] Lakhani NJ, Lepper ER, Sparreboom A, Dahut WL, Venitz J, Figg WD. Determination of 2-methoxyestradiol in human plasma, using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2005;19:1176-82.
[16] Xu X, Veenstra TD, Fox SD, Roman JM, Issaq HJ, Falk R, et al. Measuring fifteen endogenous estrogens simultaneously in human urine by high-performance liquid chromatography-mass spectrometry. Anal Chem. 2005;77:6646-54.
[17] Xu X, Roman JM, Issaq HJ, Keefer LK, Veenstra TD, Ziegler RG. Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. Anal Chem. 2007;79:7813-21.
[18] Gentili A, Perret D, Marchese S, Mastropasqua R, Curini R, Corcia. AD. Analysis of Free Estrogens and their Conjugates in Sewage and River Waters by Solid-Phase Extraction then Liquid Chromatography-Electrospray-Tandem Mass Spectrometry. Chromatographia. 2002;56:25~32.
[19] Emons G, Mente C, Knuppen R, Ball P. Radioimmunoassay for 4-hydroxyoestrone in human urine. Acta Endocrinol (Copenh). 1981;97:251-7.
[20] McGuinness BJ, Power MJ, Fottrell PF. Radioimmunoassay of 2-hydroxyestrone in urine. Clin Chem. 1994;40:80-5.
[21] Numazawa M, Kimura K, Nagaoka M, Kambegawa A. Radioimmunoassay of 2-hydroxyesterone using antisera raised against antigenic complexes obtained by convenient methods. Chem Pharm Bull (Tokyo). 1989;37:1561-3.
[22] Schneider J, Huh MM, Bradlow HL, Fishman J. Antiestrogen action of 2-hydroxyestrone on MCF-7 human breast cancer cells. J Biol Chem. 1984;259:4840-5.
[23] Hsu JF, Chang YC, Chen TH, Lin LC, Liao PC. Evaluation of electrospray ionization and atmospheric pressure chemical ionization for simultaneous detection of estrone and its metabolites using high-performance liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;860:49-56.
[24] Cheng C, Tsai HR. Analysis of steroids in yeast-mediated cell culture by on-line solid-phase extraction coupled high-performance liquid chromatography electrospray-ionization/mass spectrometry and novel continuous postcolumn infusion of internal standard technique. Anal Chim Acta. 2008;623:168-77.
[25] Anari M, Bakhtiar R, Zhu B, Huskey S, Franklin R, Evans D. Derivatization of ethinylestradiol with dansyl chloride to enhance electrospray ionization: Application in trace analysis of ethinylestradiol in rhesus monkey plasma. Anal Chem. 2002;74:4136-44.
[26] Shah VP, Midha KK, Findlay JW, Hill HM, Hulse JD, McGilveray IJ, et al. Bioanalytical method validation--a revisit with a decade of progress. Pharm Res. 2000;17:1551-7.
[27] Labadie P, Hill EM. Analysis of estrogens in river sediments by liquid chromatography-electrospray ionisation mass spectrometry. Comparison of tandem mass spectrometry and time-of-flight mass spectrometry. J Chromatogr A. 2007;1141:174-81.
[28] Raftogianis R, Creveling C, Weinshilboum R, Weisz J. Estrogen metabolism by conjugation. J Natl Cancer Inst Monogr. 2000:113-24.
[29] Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higginbotham S, et al. Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci U S A. 1997;94:10937-42.
[30] Zhang Y, Gaikwad NW, Olson K, Zahid M, Cavalieri EL, Rogan EG. Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA. Metabolism. 2007;56:887-94.
[31] Mannisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999;51:593-628.
[32] Li G, Sepkovic DW, Bradlow HL, Telang NT, Wong GY. Lycium barbarum inhibits growth of estrogen receptor positive human breast cancer cells by favorably altering estradiol metabolism. Nutr Cancer. 2009;61:408-14.
[33] Mortensen AS, Arukwe A. Dimethyl sulfoxide is a potent modulator of estrogen receptor isoforms and xenoestrogen biomarker responses in primary culture of salmon hepatocytes. Aquat Toxicol. 2006;79:99-103.
[34] 江佩樺, 利用串聯式質譜儀定量分析MCF-7乳癌細胞的雌激素代謝物 成功大學/理學院/化學系碩士論文
Reference cited in chapter 4
[1] Clemons M, Goss P. Estrogen and the risk of breast cancer. N Engl J Med. 2001;344:276-85.
[2] Henderson BE, Ross R, Bernstein L. Estrogens as a cause of human cancer: the Richard and Hinda Rosenthal Foundation award lecture. Cancer Res. 1988;48:246-53.
[3] Lewis JS, Thomas TJ, Klinge CM, Gallo MA, Thomas T. Regulation of cell cycle and cyclins by 16alpha-hydroxyestrone in MCF-7 breast cancer cells. J Mol Endocrinol. 2001;27:293-307.
[4] McGuire WL, Horwitz KB, Chamness GC, Zava DT. A physiological role for estrogen and progesterone in breast cancer. J Steroid Biochem. 1976;7:875-82.
[5] Russo IH, Russo J. Role of hormones in mammary cancer initiation and progression. J Mammary Gland Biol Neoplasia. 1998;3:49-61.
[6] Venugopal D, Zahid M, Mailander PC, Meza JL, Rogan EG, Cavalieri EL, et al. Reduction of estrogen-induced transformation of mouse mammary epithelial cells by N-acetylcysteine. J Steroid Biochem Mol Biol. 2008;109:22-30.
[7] Fishman J, Martucci C. Biological properties of 16 alpha-hydroxyestrone: implications in estrogen physiology and pathophysiology. J Clin Endocrinol Metab. 1980;51:611-5.
[8] Martucci C, Fishman J. Direction of estradiol metabolism as a control of its hormonal action--uterotrophic activity of estradiol metabolites. Endocrinology. 1977;101:1709-15.
[9] Martucci CP, Fishman J. Impact of continuously administered catechol estrogens on uterine growth and luteinizing hormone secretion. Endocrinology. 1979;105:1288-92.
[10] Swaneck GE, Fishman J. Covalent binding of the endogenous estrogen 16 alpha-hydroxyestrone to estradiol receptor in human breast cancer cells: characterization and intranuclear localization. Proc Natl Acad Sci U S A. 1988;85:7831-5.
[11] Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis. 1998;19:1-27.
[12] Markides CS, Liehr JG. Specific binding of 4-hydroxyestradiol to mouse uterine protein: evidence of a physiological role for 4-hydroxyestradiol. J Endocrinol. 2005;185:235-42.
[13] Liehr JG, Ricci MJ, Jefcoate CR, Hannigan EV, Hokanson JA, Zhu BT. 4-Hydroxylation of estradiol by human uterine myometrium and myoma microsomes: implications for the mechanism of uterine tumorigenesis. Proc Natl Acad Sci U S A. 1995;92:9220-4.
[14] Bui QD, Weisz J. Monooxygenase mediating catecholestrogen formation by rat anterior pituitary is an estrogen-4-hydroxylase. Endocrinology. 1989;124:1085-7.
[15] Iverson SL, Shen L, Anlar N, Bolton JL. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes. Chem Res Toxicol. 1996;9:492-9.
[16] Meyer MJ, Bechtold WE. Protein adduct biomarkers: state of the art. Environ Health Perspect. 1996;104 Suppl 5:879-82.
[17] Abul-Hajj YJ, Tabakovic K, Gleason WB, Ojala WH. Reactions of 3,4-estrone quinone with mimics of amino acid side chains. Chem Res Toxicol. 1996;9:434-8.
[18] Rogan EG, Badawi AF, Devanesan PD, Meza JL, Edney JA, West WW, et al. Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: potential biomarkers of susceptibility to cancer. Carcinogenesis. 2003;24:697-702.
[19] Park SA, Na HK, Kim EH, Cha YN, Surh YJ. 4-hydroxyestradiol induces anchorage-independent growth of human mammary epithelial cells via activation of IkappaB kinase: potential role of reactive oxygen species. Cancer Res. 2009;69:2416-24.
[20] Zhao Z, Kosinska W, Khmelnitsky M, Cavalieri EL, Rogan EG, Chakravarti D, et al. Mutagenic activity of 4-hydroxyestradiol, but not 2-hydroxyestradiol, in BB rat2 embryonic cells, and the mutational spectrum of 4-hydroxyestradiol. Chem Res Toxicol. 2006;19:475-9.
[21] Roy D, Weisz J, Liehr JG. The O-methylation of 4-hydroxyestradiol is inhibited by 2-hydroxyestradiol: implications for estrogen-induced carcinogenesis. Carcinogenesis. 1990;11:459-62.
[22] Philips BJ, Ansell PJ, Newton LG, Harada N, Honda S, Ganjam VK, et al. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues. Biochemistry. 2004;43:6698-708.
[23] Devanesan P, Todorovic R, Zhao J, Gross ML, Rogan EG, Cavalieri EL. Catechol estrogen conjugates and DNA adducts in the kidney of male Syrian golden hamsters treated with 4-hydroxyestradiol: potential biomarkers for estrogen-initiated cancer. Carcinogenesis. 2001;22:489-97.
[24] Cavalieri E, Frenkel K, Liehr JG, Rogan E, Roy D. Estrogens as endogenous genotoxic agents--DNA adducts and mutations. J Natl Cancer Inst Monogr. 2000:75-93.
[25] Lopachin RM, Decaprio AP. Protein adduct formation as a molecular mechanism in neurotoxicity. Toxicol Sci. 2005;86:214-25.
[26] Stack DE, Byun J, Gross ML, Rogan EG, Cavalieri EL. Molecular characteristics of catechol estrogen quinones in reactions with deoxyribonucleosides. Chem Res Toxicol. 1996;9:851-9.
[27] Epe B, Harttig U, Stopper H, Metzler M. Covalent Binding of Reactive Estrogen Metabolites to Microtubular Protein as a Possible Mechanism of Aneuploidy Induction and Neoplastic Cell-Transformation. Environ Health Persp. 1990;88:123-7.
[28] Rubino FM, Pitton M, Di Fabio D, Colombi A. Toward an "omic" physiopathology of reactive chemicals: thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds. Mass Spectrom Rev. 2009;28:725-84.
校內:2021-01-01公開