| 研究生: |
陳品瑜 Chen, Pin-Yu |
|---|---|
| 論文名稱: |
含偶氮苯兩性雙團聚共聚物mPEG-b-PDMA-Azo在可見光照射下的光應答行為與螢光性質之研究 Photoresponsive Behaviors and Fluorescent Properties of Azobenzene-Containing Amphiphilic Diblock Copolymer mPEG-b-PDMA-Azo under Visible Light Irradiation |
| 指導教授: |
羅介聰
Lo, Chieh-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 雙團聯共聚物 、偶氮苯 、微胞 、光異構化 、螢光 |
| 外文關鍵詞: | diblock copolymer, azobenzene, micelle, photoisomerization, fluorescence |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成具有光學異構化特性之偶氮苯單體,再以原子轉移自由基聚合法製備含有偶氮苯之雙親性團聯共聚物poly(ethylene glycol)methylether-block-poly(6-(4-(4-dimethylaminophenylazo)phenoxy-hexyl methacrylate) (mPEG-b-PDMA-Azo),並研究其在溶液中之結構與光異構化行為。為了了解該共聚物的自組裝行為,利用小角度X光散射觀察其在混合溶液中結構的變化,當mPEG-b-PDMA-Azo溶於中性溶劑時,由於中性溶劑對兩鏈段具有良好的相容性,共聚物以random coil構型存在。然而,隨著混合溶液中選擇性溶劑(H2O)比例的增加,由於mPEG鏈段和PDMA-Azo鏈段與水的相容性不同,會逐漸形成以偶氮苯鏈段為核(core),mPEG鏈段為殼(shell)之微胞結構。
mPEG-b-PDMA-Azo具有偶氮苯分子之光異構化特性,在可見光照射下會由反式異構物轉變為順式異構物,而在黑暗中靜置可誘發逆反應,利用紫外光-可見光分光光譜儀分析共聚物於混合溶液中之光異構化行為。結果顯示,偶氮苯分子在選擇性溶液中的光異構化速率明顯小於其在中性溶劑中的速率,這是由於聚集體的形成使PDMA-Azo鏈段產生聚集,限制其進行光異構化時結構轉換所需之空間,而導致光異構化速率下降。此外,溶劑的選擇性也會影響偶氮苯分子在溶劑中的聚集型態,於中性溶劑中,偶氮苯分子以自由散佈的nonassociation為主要分布型態;當選擇性溶液加入中性溶劑時,溶液對PDMA-Azo鏈段的溶解度降低,因此形成聚集體。當水的比例增加時,THF/H2O和DMF/H2O混合溶液系統中的偶氮苯鏈段會顯現不同的聚集行為。在THF/H2O中,nonassociation型的比例變化不大,可能是因為水的比例不足以造成大量聚集,且J-aggregation比例增加而H-aggregation比例減少,這是因為J-aggregation在高極性溶劑中更為穩定。在DMF/H2O中,隨著水的比例增加,高極性的環境使靜電排斥減弱,促進分子聚集,造成nonassociation型態顯著下降,而H-aggregation和J-aggregation的比例都增加。
mPEG-b-PDMA-Azo具有偶氮苯分子之螢光特性,隨著混合溶液中水的比例增加,螢光放射強度明顯下降且出現微弱紅位移現象,這是由於極性溶劑與螢光基團之間的相互作用,影響分子偶極矩並使溶劑分子重新排列,進而影響螢光放射特性。含偶氮苯的團聯共聚物在THF/H2O和DMF/H2O兩種混合溶液中,由於溶劑極性差異及偶氮苯分子光異構化反應的影響,照光前後呈現出不同的螢光特性。在可見光照射下,偶氮苯分子從低極性反式結構轉變為高極性順式結構。在低極性THF中,反式結構的偶氮苯螢光強度較高,因為其穩定性較高可促進能量轉移;而順式結構因與溶劑分子間相互作用較弱,導致螢光強度降低。相反的,在高極性DMF中,順式結構穩定性和螢光放射效率較高,導致螢光強度增加。此外,高極性溶劑改變偶氮苯分子的電子態,導致螢光放射峰藍移。
In this study, we synthesized azobenzene monomers with photoisomerization properties and used atom transfer radical polymerization (ATRP) to prepare the amphiphilic block copolymer poly(ethylene glycol)methylether-block-poly(6-(4-(4-dimethylaminophenylazo)phenoxy-hexyl methacrylate) (mPEG-b-PDMA-Azo). We investigated the photoisomerization behavior and morphology of mPEG-b-PDMA-Azo in solutions. The morphology of mPEG-b-PDMA-Azo in mixed solvents was characterized by using small angle X-ray scattering (SAXS). In a neutral solvents (THF and DMF), mPEG-b-PDMA-Azo exhibited as a random coiled conformation. However, with an increasing the proportion of selective solvent (H2O) in the mixed solvent, the different compatibilities of mPEG and PDMA-Azo with water led to the gradual formation of micellar structures with the azobenzene segment forming the core and the mPEG segment forming the shell.
mPEG-b-PDMA-Azo exhibited the photoresponsive properties of azobenzene molecules. Under visible light irradiation, we observed a trans-to-cis isomerization, while the reverse reaction occurred in dark. The photoisomerization rate of azobenzene molecules in selective solvents was significantly slower than in neutral solvents. This was attributed to the formation of aggregates which restricted the space needed for the structural transformation of PDMA-Azo segments during photoisomerization, resulting in decreasing the rate. Furthermore, solvent selectivity affected the aggregation behavior of azobenzene. In neutral solvents, azobenzene molecules mainly existed in a nonassociation state. When selective solvents were introduced, the solubility of the PDMA-Azo segment decreased, inducing aggregation. As the proportion of water increased, the aggregation behavior of azobenzene segments differed between THF/H2O and DMF/H2O mixed solvent systems. In THF/H2O, the proportion of nonassociation remained relatively unchanged, possibly due to insufficient water to induce significant aggregation. The proportion of J-aggregation increased while H-aggregation decreased, because J-aggregation exhibited greater stability in high-polarity solvents compared to H-aggregation. In the DMF/H2O system, increasing water content led to a significant reduction in nonassociation, accompanied by an increase in both H-aggregation and J-aggregation. This was attributed to the high-polarity environment reducing electrostatic repulsion, thereby promoting molecular aggregation.
mPEG-b-PDMA-Azo exhibited the fluorescence properties. As the selectivity of the solvent increased, the fluorescence intensity significantly decreased, accompanied by a slight red shift. This was due to the interaction between the polar solvent and the fluorescent groups, affecting the molecular dipole moment and causing solvent molecules to rearrange, thereby influencing the fluorescence properties. In THF/H2O and DMF/H2O mixed solvent systems, the differences in solvent polarity and the effect of photoisomerization on azobenzene molecules led to distinct fluorescence characteristics before and after irradiation. Under visible light irradiation, azobenzene molecules underwent a transition from a low-polarity trans-isomers to a high-polarity cis-isomers. In low-polarity THF, the fluorescence intensity of the trans-isomers was higher due to its greater stability, which promotes energy transfer. In contrast, the cis-isomers had weaker interactions with solvent molecules, resulting in lower fluorescence intensity. Conversely, in high-polarity DMF, the cis-isomers was more stable and had higher fluorescence emission efficiency, leading to increased fluorescence intensity. Additionally, high-polarity solvents changed the electronic states of azobenzene molecules, causing a blue shift in the fluorescence emission peak.
Ikeda, T., Tsutsumi, O., & Wu, Y. L. Optical switching and image storage by means of photochromic liquid crystals. Molecular Crystals and Liquid Crystals, 347, 245-257, 2000.
Gindre, D., Boeglin, A., Fort, A., Mager, L., & Dorkenoo, K. D. Rewritable optical data storage in azobenzene copolymers. Optics Express, 14(21), 9896-9901, 2006.
Akiyama, H., & Yoshida, M. Photochemically Reversible Liquefaction and Solidification of Single Compounds Based on a Sugar Alcohol Scaffold with Multi Azo-Arms. Advanced Materials, 24(17), 2353-2356, 2012.
Wang, G., Tong, X., & Zhao, Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules, 37(24), 8911-8917, 2004.
Zhou, J., Xu, H., Tong, Z., Yang, Y., & Jiang, G. Photo/pH-controlled host-guest interaction between an azobenzene-containing block copolymer and water-soluble pillar[6]arene as a strategy to construct the "compound vesicles" for controlled drug delivery. Mater Sci Eng C Mater Biol Appl, 89, 237-244, 2018.
Nakayama, K., Endo, M., & Majima, T. A hydrophilic azobenzene-bearing amino acid for photochemical control of a restriction enzyme BamHI. Bioconjugate Chemistry, 16(6), 1360-1366, 2005.
Li, J., Wang, X. Y., & Liang, X. G. Modification of Nucleic Acids by Azobenzene Derivatives and Their Applications in Biotechnology and Nanotechnology. Chemistry-an Asian Journal, 9(12), 3344-3358, 2014.
Höglsperger, F., Vos, B. E., Hofemeier, A. D., Seyfried, M. D., Stövesand, B., Alavizargar, A., Topp, L., Heuer, A., Betz, T., & Ravoo, B. J. Rapid and reversible optical switching of cell membrane area by an amphiphilic azobenzene. Nature Communications, 14(1), 12, 2023.
Kim, H. C., Park, S. M., & Hinsberg, W. D. Block Copolymer Based Nanostructures: Materials, Processes, and Applications to Electronics. Chemical Reviews, 110(1), 146-177, 2010.
Shaikh, S., Ray, D., Aswal, V. K., & Sharma, R. K. Incorporation of Lamotrigine Drug in the PEO-PPO-PEO Triblock Copolymer (Pluronic F127) Micelles: Effect of Hydrophilic Polymers. Journal of Surfactants and Detergents, 20(3), 695-706, 2017.
Park, J. W., Kim, H., & Han, M. Polymeric self-assembled monolayers derived from surface-active copolymers: a modular approach to functionalized surfaces. Chemical Society Reviews, 39(8), 2935-2947, 2010.
Smart, T., Lomas, H., Massignani, M., Flores-Merino, M. V., Perez, L. R., & Battaglia, G. Block copolymer nanostructures. Nano Today, 3(3-4), 38-46, 2008.
L Li, M. Q., & Ober, C. K. Block copolymer patterns and templates. Materials Today, 9(9), 30-39, 2006.
Bates, F. S. Polymer-polymer phase behavior. Science, 251(4996), 898-905, 1991.
Leibler, L. Theory of microphase separation in block copolymers. Macromolecules, 13(6), 1602-1617, 1980.
Matsen, M. W., & Bates, F. S. Unifying weak- and strong-segregation block copolymer theories. Macromolecules, 29(4), 1091-1098, 1996.
Matsen, M. W. Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts. Macromolecules, 45(4), 2161-2165, 2012.
Bates, F. S., & Fredrickson, G. H. Block copolymer thermodynamics: theory and experiment. Annual review of physical chemistry, 41(1), 525-557, 1990.
Kim, J. K., & Han, C. D. (2010). Phase Behavior and Phase Transitions in AB- and ABA-type Microphase-Separated Block Copolymers. Polymer Materials: Block-Copolymers, Nanocomposites, Organic/Inorganic Hybrids, Polymethylenes, 77-145, 2010.
Merino, E., & Ribagorda, M. Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein Journal of Organic Chemistry, 8, 1071-1090, 2012.
Rau, H. Photoisomerization of Azobenzenes. Cheminform, 34, 2003.
Bandara, H. M. D., & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chemical Society Reviews, 41(5), 1809-1825, 2012.
Tamai, N., & Miyasaka, H. Ultrafast dynamics of photochromic systems. Chemical Reviews, 100(5), 1875-1890, 2000.
Freyer, W., Brete, D., Schmidt, R., Gahl, C., Carley, R., & Weinelt, M. Switching behavior and optical absorbance of azobenzene-functionalized alkanethiols in different environments. Journal of Photochemistry and Photobiology a-Chemistry, 204(2-3),. 102-109, 2009.
Yang, P. C., Chien, Y. H., Tseng, S. H., Lin, C. C., & Huang, K. Y. Synthesis and Self-Assembly of Multistimulus-Responsive Azobenzene-Containing Diblock Copolymer through RAFT Polymerization. Polymers, 11(12), 16, 2019.
Sato, M., Kinoshita, T., Takizawa, A., & Tsujita, Y. Photoinduced conformational transition of polypeptides containing azobenzenesulfonate in the side chains. Macromolecules, 21(6), 1612-1616, 1988.
Hartley, G. S. The cis-form of azobenzene and the velocity of the thermal cis → trans-conversion of azobenzene and some derivatives. Journal of the Chemical Society, 633-642, 1938.
Jerca, V. V., Jerca, F. A., Rau, I., Manea, A. M., Vuluga, D. M., & Kajzar, F. Advances in understanding the photoresponsive behavior of azobenzenes substituted with strong electron withdrawing groups. Optical Materials, 48, 160-164, 2015.
Airinei, A., Fifere, N., Homocianu, M., Gaina, C., Gaina, V., & Simionescu, B. C. Optical Properties of Some New Azo Photoisomerizable Bismaleimide Derivatives. International Journal of Molecular Sciences, 12(9), 6176-6193, 2011.
Tong, X., Cui, L., & Zhao, Y. Confinement effects on photoalignment, photochemical phase transition, and thermochromic behavior of liquid crystalline azobenzene-containing diblock copolymers. Macromolecules, 37(9), 3101-3112, 2004.
Wu, S., Wang, L., Kroeger, A., Wu, Y. P., Zhang, Q. J., & Bubeck, C. Block copolymers of PS-b-PEO co-assembled with azobenzene-containing homopolymers and their photoresponsive properties. Soft Matter, 7(24), 11535-11545, 2011.
Shimizu, M., & Hiyama, T. Organic Fluorophores Exhibiting Highly Efficient Photoluminescence in the Solid State. Chemistry-an Asian Journal, 5(7), 1516-1531 ,2010.
Menzel, H., Weichart, B., Schmidt, A., Paul, S., Knoll, W., Stumpe, J., & Fischer, T. Small-angle X-ray scattering and ultraviolet-visible spectroscopy studies on the structure and structural changes in Langmuir-Blodgett films of polyglutamates with azobenzene moieties tethered by alkyl spacers of different length. Langmuir, 10(6), 1926-1933, 1994.
Zacharias, P. S., Ameerunisha, S., & Korupoju, S. R. Photoinduced fluorescence changes on E-Z isomerisation in azobenzene derivatives. Journal of the Chemical Society-Perkin Transactions, 2(9), 2055-2059, 1998.
Li, Y., Zhou, N., Zhang, W., Zhang, F., Zhu, J., Zhang, Z., Cheng, Z., Tu, Y., & Zhu, X. Light‐driven and aggregation‐induced emission from side‐chain azoindazole polymers. Journal of Polymer Science Part A: Polymer Chemistry, 49(22), 4911-4920, 2011.
Ran, X., Wang, H. T., Shi, L. L., Lou, J., Liu, B., Li, M., & Guo, L. J. Light-driven fluorescence enhancement and self-assembled structural evolution of an azobenzene derivative. Journal of Materials Chemistry C, 2(46), 9866-9873, 2014.
Xiang, Y., Xue, X. Q., Zhu, J. A., Zhang, Z. B., Zhang, W., Zhou, N. C., & Zhu, X. L. Fluorescence behavior of an azobenzene-containing amphiphilic diblock copolymer. Polymer Chemistry, 1(9), 1453-1458, 2010.
Qi, B., & Zhao, Y. Fluorescence from an azobenzene-containing diblock copolymer micelle in solution. Langmuir, 23(10), 5746-5751, 2007.
Hrozhyk, U. A., Serak, S. V., Tabiryan, N. V., Hoke, L., Steeves, D. M., Kimball, B., & Kedziora, G. Systematic study of absorption spectra of donor-acceptor azobenzene mesogenic structures. Molecular Crystals and Liquid Crystals, 489, 257-272, 2008.
Wang, X. L., & Wang, X. G. Epoxy-based azo polymers with high chromophore density: Synthesis, characterization and photoinduced birefringence. Chinese Journal of Polymer Science, 30(3), 415-422, 2012.
Beharry, A. A., Sadovski, O., & Woolley, G. A. Azobenzene Photoswitching without Ultraviolet Light. Journal of the American Chemical Society, 133(49), 19684-19687, 2011.
Han, M. R., Hirayama, Y., & Hara, M. Fluorescence enhancement from self-assembled aggregates: Substituent effects on self-assembly of azobenzenes. Chemistry of Materials, 18(12), 2784-2786, 2006.
Xu, J., Niu, B., Guo, S., Zhao, X. L., Li, X. L., Peng, J. W., Deng, W. X., Wu, S., & Liu, Y. L. Influence of Chromophoric Electron-Donating Groups on Photoinduced Solid-to-Liquid Transitions of Azopolymers. Polymers, 12(4), 9, 2020.
Siewertsen, R., Neumann, H., Buchheim-Stehn, B., Herges, R., Näther, C., Renth, F., & Temps, F. Highly Efficient Reversible Z-E Photoisomerization of a Bridged Azobenzene with Visible Light through Resolved S1 (nπ*) Absorption Bands. Journal of the American Chemical Society, 131(43), 15594, 2009.
Mao, G. P., Wang, J. G., Clingman, S. R., Ober, C. K., Chen, J. T., & Thomas, E. L. Molecular design, synthesis, and characterization of liquid crystal coil diblock copolymers with azobenzene side groups. Macromolecules, 30(9). 2556-2567, 1997.
Chen, J., Xu, T. C., Zhao, W. G., Ma, L. L., Chen, D. Z., & Lu, Y. Q. Photoresponsive thin films of well-synthesized azobenzene side-chain liquid crystalline polynorbornenes as command surface for patterned graphic writing. Polymer, 218, 12, 2021.
Wen, W., Ouyang, W. Q., Guan, S., & Chen, A. H. Synthesis of azobenzene-containing liquid crystalline block copolymer nanoparticles via polymerization induced hierarchical self-assembly. Polymer Chemistry, 12(3), 458-465, 2021.
Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules, 45(10), 4015-4039, 2012.
Mura, S., Nicolas, J., & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003, 2013.
Pearson, S., Vitucci, D., Khine, Y. Y., Dag, A., Lu, H. X., Save, M., Billon, L., & Stenzel, M. H. Light-responsive azobenzene-based glycopolymer micelles for targeted drug delivery to melanoma cells. European Polymer Journal, 69, 616-627, 2015.
Kienzler, M. A., Reiner, A., Trautman, E., Yoo, S., Trauner, D., & Isacoff, E. Y. A Red-Shifted, Fast-Relaxing Azobenzene Photoswitch for Visible Light Control of an Ionotropic Glutamate Receptor. Journal of the American Chemical Society, 135(47), 17683-17686, 2013.
Dong, R. J., Zhu, B. S., Zhou, Y. F., Yan, D. Y., & Zhu, X. Y. Reversible photoisomerization of azobenzene-containing polymeric systems driven by visible light. Polymer Chemistry, 4(4), 912-915, 2013.
Priimagi, A., & Shevchenko, A. Azopolymer-Based Micro- and Nanopatterning for Photonic Applications. Journal of Polymer Science Part B-Polymer Physics, 52(3), 163-182, 2014.
Zhao, Y., & He, J. Azobenzene-containing block copolymers: the interplay of light and morphology enables new functions. Soft Matter, 5(14), 2686-2693 2009.
Hugel, T., Holland, N. B., Cattani, A., Moroder, L., Seitz, M., & Gaub, H. E. Single-molecule optomechanical cycle. Science, 296(5570), 1103-1106, 2002.
Yu, Y. L., Nakano, M., & Ikeda, T. Directed bending of a polymer film by light - Miniaturizing a simple photomechanical system could expand its range of applications. Nature, 425(6954), 145-145, 2003.
Ichimura, K., Suzuki, Y., Seki, T., Hosoki, A., & Aoki, K. Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer. Langmuir, 4(5), 1214-1216, 1988.
Chigrinov, V. G., Kozenkov, V. M., & Kwok, H. S. Photoalignment of liquid crystalline materials: physics and applications, 39-67, 2008.
Ikeda, T., & Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science, 268(5219), 1873-1875, 1995.
Lee, H. K., Doi, K., Kanazawa, A., Shiono, T., Ikeda, T., Fujisawa, T., Aizawa, M., & Lee, B. Light-scattering-mode optical switching and image storage in polymer/liquid crystal composite films by means of photochemical phase transition. Polymer, 41(5), 1757-1763, 2000.
Rochon, P., Gosselin, J., Natansohn, A., & Xie, S. Optically induced and erased birefringence and dichroism in azoaromatic polymers. Applied Physics Letters, 60(1), 4-5, 1992.
Shibaev, V., Kostromin, S., & Ivanov, S. Photoregulation of the optical properties of comb-shaped polymers with mesogenic side groups. Macromolecular Symposia, 118, 493-496, 1997.
Wu, Y. L., Kanazawa, A., Shiono, T., Ikeda, T., & Zhang, Q. J. Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 4. Dynamic study of the alignment process. Polymer, 40(17), 4787-4793, 1999.
Dong, R. J., Zhu, B. S., Zhou, Y. F., Yan, D. Y., & Zhu, X. Y. "Breathing" Vesicles with Jellyfish-like On-Off Switchable Fluorescence Behavior. Angewandte Chemie-International Edition, 51(46), 11633-11637, 2012.
Yu, H. F., Kobayashi, T., & Hu, G. H. Photocontrolled microphase separation in a nematic liquid-crystalline diblock copolymer. Polymer, 52(7), 1554-1561, 2011.
Bertolasi, V., Gilli, P., Ferretti, V., & Gilli, G. Intramolecular O–H · · · O hydrogen bonds assisted by resonance. Correlation between crystallographic data and 1H NMR chemical shifts. Journal of the Chemical Society, Perkin Transactions, 2(5), 945-952, 1997.
He, X. H., Zhang, H. L., & Wang, X. Y. Wang, Synthesis of side chain liquid crystal-coil diblock copolymers with p-methoxyazobenzene side groups by atom-transfer radical polymerization. Polymer Journal, 34(7), 523-528, 2002.
Cui, L., Zhao, Y., Yavrian, A., & Galstian, T. Synthesis of azobenzene-containing diblock copolymers using atom transfer radical polymerization and the photoalignment behavior. Macromolecules, 36(22), 8246-8252, 2003.
Walther, M., Faulhammer, H., & Finkelmann, H. On the thread‐like morphology of LC/I block copolymers in nematic solvents. Macromolecular Chemistry and Physics, 199(2), 223-237, 1998.
Noroozi, N. Numerical simulations of flow and microstructure in nematic liquid crystalline materials. University of British Columbia, 2013.
Stefanis, E., & Panayiotou, C. Prediction of Hansen solubility parameters with a new group-contribution method. International Journal of Thermophysics, 29(2), 568-585, 2008.
Choi, P. A re-examination of the concept of Hildebrand solubility parameter for polymers. Macromolecular Rapid Communications, 23(8), 484-487, 2002.
Gao, J., Wu, S., & Rogers, M. A. Harnessing Hansen solubility parameters to predict organogel formation. Journal of Materials Chemistry, 22(25), 12651-12658, 2012.
Burke, J. Solubility Parameters: Theory and Application. 1984.
Li, Y., Deng, Y., Tong, X., & Wang, X. Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer. Macromolecules, 39(3), 1108-1115, 2006.
Hammouda, B. Analysis of the Beaucage model. Journal of Applied Crystallography, 43(6), 1474-1478, 2010.
Oscurato, S. L., Salvatore, M., Maddalena, P., & Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics, 7(8), 1387-1422, 2018.
Kline, S. R. Reduction and analysis of SANS and USANS data using IGOR Pro. Journal of applied crystallography, 39(6), 895-900, 2006.
Pedersen, J. S. Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores. Journal of Applied Crystallography, 33(3), 637-640, 2000.
Yang, R., He, S., Hu, Q., Sun, M., Hu, D., & Yi, J. Applying SANS technique to characterize nano-scale pore structure of Longmaxi shale, Sichuan Basin (China). Fuel, 197, 91-99, 2017.
Deka, S. R., Yadav, S., Mahato, M., & Sharma, A. K. Azobenzene-aminoglycoside: Self-assembled smart amphiphilic nanostructures for drug delivery. Colloids and Surfaces B: Biointerfaces, 135, 150-157, 2015.
Ray, P., Kale, N., & Quadir, M. New side chain design for pH-responsive block copolymers for drug delivery. Colloids and Surfaces B: Biointerfaces, 200, 111563, 2021.
Lv, W., Wang, C., Ji, L., Deng, T., Yang, S., Zhu, T., Liu, S.-J., & Zhao, Q. Cyclodextrin as water-soluble host of azobenzene-based pH probe enables long-term monitoring. Journal of Materials Chemistry C, 2024.
Haro, M., Giner, B., Gascón, I., Royo, F. M., & López, M. C. Isomerization behavior of an azopolymer in terms of the Langmuir-Blodgett film thickness and the transference surface pressure. Macromolecules, 40(6), 2058-2069, 2007.
Advincula, R. C., Fells, E., & Park, M.-k. Molecularly ordered low molecular weight azobenzene dyes and polycation alternate multilayer films: Aggregation, layer order, and photoalignment. Chemistry of materials, 13(9), 2870-2878, 2001.
Wei, J., Yan, Z., Lin, L., Gu, J., Feng, Z., & Yu, Y. Photo/pH dual-responsive behavior of azopyridine-containing copolymer vesicles. Reactive and Functional Polymers, 73(8), 1009-1014, 2013.
Yang, X., Xu, X., & Ji, H.-F. Solvent effect on the self-assembled structure of an amphiphilic perylene diimide derivative. The Journal of Physical Chemistry B, 112(24), 7196-7202, 2008.
Würthner, F., Thalacker, C., Diele, S., & Tschierske, C. Fluorescent J‐type aggregates and thermotropic columnar mesophases of perylene bisimide dyes. Chemistry–A European Journal, 7(10), 2245-2253, 2001.
Spano, F. C., & Silva, C. H-and J-aggregate behavior in polymeric semiconductors. Annual review of physical chemistry, 65(1), 477-500, 2014.
Homocianu, M., Airinei, A., & Dorohoi, D. Solvent effects on the electronic absorption and fluorescence spectra. Journal of Advanced Research in Physics, 2(1), 011105, 2011.
Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry, 83(12), 2213-2228, 2011.
Hecht, E. Optics. Pearson Education India, 2012.
Brian Herman, J. R. L., Ian D. Johnson and Michael W. Davidson. Solvent Effects on Fluorescence Emission.
Brian J. Myers, J. W., Khoi Van. Common Solvents Used in Organic Chemistry: Table of Properties.
Yan, C., Yang, L., Mo, X., Chen, K., Niu, W., Zhao, Z., & Li, G. Dual thermo-and photo-responsive micelles based on azobenzene-containing random copolymer. Materials, 15(1), 2, 2021.
Shi, L., Ran, X., Li, Y., Li, Q., Qiu, W., & Guo, L. Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator. RSC Advances, 5(48), 38283-38289, 2015.
Lakowicz, J. R., & Lakowicz, J. R. Mechanisms and dynamics of solvent relaxation. Principles of Fluorescence Spectroscopy, 217-255, 1983.