| 研究生: |
沈政勳 Shen, Zheng-Xun |
|---|---|
| 論文名稱: |
鋰鹽溶於丁內酯之導電性之分子動力模擬 Molecular dynamics simulations of the conductivities for LiN(SO2CF3)2 and LiBF4 in γ-butyrolactone |
| 指導教授: |
施良垣
Shi, Liang-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 分子動力模擬 、導電性 、丁內酯 |
| 外文關鍵詞: | γ-butyrolactone, conductivity, Molecular dynamics simulations |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以分子動力模擬的方法,研究鋰鹽LiBF4及LiN(CF3SO2)2(簡稱LiTFSI)的γ-butyrolactone (簡稱GBL)溶液之導電性,及其與溶劑之交互作用。模擬之條件參考Aihara等之實驗參數,鋰鹽濃度0.5、1.0、1.5 M及295 K溫度。
模擬所得結果為鋰離子、負離子及溶劑分子之擴散速率隨濃度增加而遞減,但導電度值則遞增,主要是由於可導電離子增加所致。若以自由鋰離子之產生機率修正導電度值,則計算值與實驗值接近。當鋰鹽濃度高時,正、負離子互相結合的現象愈加明顯,造成離子群內之平均離子數增加,且自由鋰離子之機率遞減。
當LiBF4濃度為1.5 M時,鋰離子周圍第一殼層(約6.35 Å)含有6.3個GBL,及1.7個BF4-離子與之配位。當鋰鹽為LiTFSI時,這些值分別為6.1與1.8個。此外,前者之自由鋰離子機率11.0 ﹪,後者為7.2 ﹪,這顯示Li+與TFSI-結合之傾向較為明顯。當濃度降為0.5 M時,鋰離子周圍之溶劑數增加,而負離子逐漸減少。
Molecular dynamics simulation has been applied to investigate the conducting behavior and salt-solvent interactions for LiBF4 and LiN(CF3SO2)2 (LiTFSI) in γ-butyrolactone (GBL). Simulations were performed at salt concentrations of 0.5, 1.0, and 1.5 M at 295 K, to mimic the experiment at conditions of the previous research conducted by Aihara et al.
The simulated diffusion coefficients for Li+, anion, and solvent decrease with the increase of concentration, but the conductivities increases, due to the increasing number of conducting species. After revision with the probability of free lithium ion, the computed conductivities are close to the experiment as values. At high salt concentrations, the association between Li+ and anions becomes more sever, resulting in the formation of large cluster and reduction of the number of free ions.
At 1.5 M LiBF4 concentration, there are 6.3 solvent molecules and 1.7 anions within the first coordination sphere (about 6.35 Å) of Li+. The corresponding values are 6.1 and 1.8 for LiTFSI, respectively. Moreover, the probability to find free Li+ ion is 11.0 ﹪for the former and 7.2 ﹪for the latter, indicating a stronger tendency for Li+—TFSI- association. As the concentration is reduced to 0.5 M, the number of coordinating solvent molecules increases in contrast to the reduction of anions.
[1] K. Hayamizu, Y. Aihara, S. Arai, C. G. Martinez, J. Phys. Chem B, 103 519 (1999).
[2] K. Hayamizu, Y. Aihara, S. Arai, William S. Price, Electrochimica Acta, 45 1313 (2000).
[3] Cazzanelli, E.; Croce, F.; Appetecchi, G. B.; Bellevelli, F.;Mustarelli, P. J. Chem. Phys., 107 5747 (1997).
[4] E. Cazzanelli, P. Mustarelli, F. Benevelli, G. B. Appetecchi, F. Croce, Solid State Ionic, 86-88 379 (1996).
[5] Y. Aihara, K. Sugimoto, W. S. Price, K. Hayamizu, J. Chem. Phys., 113 1981 (2000).
[6] T. Fukushima, Y. Matsuda, H. Hashimoto, R. Arakawa, Electrochem. Solid state Lett., 4 A127 (2001).
[7] T. Fukushima, Y. Matsuda, H. Hashimoto, R. Arakawa, Journal of Power Sources, 110 34 (2002).
[8] Oleg Borodin, Grant D. Smith, J. Phys. Chem B, 104 8017 (2000).
[9] J. C. Soetens, C. Millot, B. Maigret, J. Phys. Chem A, 102 1055 (1998).
[10] 陳輝龍, 國立成功大學化學研究所碩士論文, (2001).
[11] G. Moumouzias, G. Ritzoulis, V. Komvokis, C. Zovoilis, D. Siapkas, Journal of Power Sources, 81-82 830 (1999).
[12] Y. Aihara, S. Arai. K. Hayamizu, Electrochimica Acta, 45 1321 (2000).
[13] B.H. Zimn, J. Chem. Phys., 21, 934 (1953).
[14] B.H. Zimn, J.L. Lundberg, J. Phys. Chem., 60, 425 (1956)
[15] J.L. Lundberg, J. Macromol. Sci., B3, 693 (1969)
[16] J. M. Haile, “Molecular dynamics simulation”, New York, 1992.
[17] A. Chagnes, B. Carré, P. Willmann, D. Lemordant, journal of Power Sources, 109 203 (2002).