| 研究生: |
劉嫣婷 Liu, Yen-Ting |
|---|---|
| 論文名稱: |
傳染性胰臟壞死病毒與其促凋亡基因VP3誘發凋亡功能之探討 Dissection of IPNV and VP3 induce cell death in CHSE-214 cells |
| 指導教授: |
洪健睿
Hong, Jiann-Ruey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 大眼鮭魚胚胎細胞 、粒線體 、細胞凋亡 、傳染性胰臟壞死病毒 、傳染性胰臟壞死病毒VP3蛋白 |
| 外文關鍵詞: | fish cells, Infectious pancreatic necrosis virus, apoptosis, tyrosine kinase, death effector Bad, capsid protein VP3, mitochondria |
| 相關次數: | 點閱:101 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳染性胰臟壞死病毒(Infectious Pancreatic Necrosis Virus, IPNV)屬於兩段雙股核醣核酸病毒科(Birnaviridae),為感染經濟性魚貝類之重要水生生物病毒,所以瞭解其致病機轉相當重要。先前研究證實IPNV感染大眼鮭魚胚胎細胞株(CHSE-214)後會引發細胞凋亡,但在整個病毒感染過程中,病毒本身所表達之基因是否有參與其中,尚未清楚。先前本實驗室已初步知道傳染性胰臟壞死病毒其外殼蛋白VP3基因,能誘發斑馬魚上皮肝臟細胞株(ZLE)凋亡及促進(up-regulate)促凋亡基因Bad的表現。由於VP3蛋白於傳染性胰臟壞死病毒所誘發細胞凋亡的角色仍不清楚,因此本論文將更進一步探討,外殼蛋白VP3於傳染性胰臟壞死病毒所誘發宿主細胞凋亡之角色。
首先,利用免疫螢光染色追蹤VP3蛋白之細胞內位置,我們發現當IPNV感染宿主細胞後產生的VP3蛋白將部份跑到粒線體上,我們進一步分離粒線體,並鑑定VP3蛋白是否能跑到粒線體上,其結果與免疫螢光染色一致,尤其在病毒感染之後第9小時更是明顯。同時若於宿主內大量表現作用於粒線體的抗凋亡蛋白Bcl-xL,同樣能有效減緩病毒所造成的細胞凋亡現象。
接著利用antisense RNA方法來阻斷(knockdown)VP3蛋白的表現,便於了解其對宿主細胞存活之影響,分別(1) 偵測細胞凋亡早期marker細胞膜上phosphatidylserine (PS)外翻;(2) 偵測粒線體膜電位之失衡;(3) Bad的表現量之降低;(4) 對病毒效價之降低,其結果一致,當減少VP3蛋白的表現時,能降低胰臟壞死病毒所誘發宿主細胞凋亡與病毒效價。接著更進一步將VP3基因截切為不同片段並接合到綠色螢光蛋白(EGFP)基因,轉染至ZLE細胞中大量表達,發現在VP3基因的第80個到第158個胺基酸序列,可能含有某特定功能區域(functional domain)而具有較強的誘發凋亡能力。
最後為了進一步瞭解VP3如何扮演誘發凋亡角色,我們發現到在病毒感染過程中,VP3蛋白會被磷酸化所修飾。另外我們也發現VP3蛋白本身也具有酪胺酸激酶(tyrosine kinase)功能,藉由處理酪胺酸激酶抑制劑genisten,能有效抑制VP3蛋白的激酶活性並且提升細胞存活率。
本論文針對VP3蛋白凋亡機制之研究,希望能對於瞭解傳染性胰臟壞死病毒致病機制和疾病控制有所幫助。
Infectious Pancreatic Necrosis Virus (IPNV) is one of the widespread fish pathogen and infects many economically important finfish and shellfish. IPNV-infected chinook salmon embryo cells (CHSE-214) could induce cell death through apoptosis. Further, we have found that the submajor capsid protein VP3 can induce apoptosis in ZLE cell line, but its cell death mechanism is still unknown. In this thesis, we further want to know VP3 death mechanism during IPNV infection.
First, we have found that VP3 could target into mitochondria at early-middle replication stage with the immunofluorescence staining assay and Western blot from whole mitochondria. On the other hand, IPNV-induced CHSE-214 cell death through mitochondrial membrane potential loss could be blocked by overexpression of zfBcl-xL. Then, with using of antisense RNA approach for knockdown of VP3 expression during IPNV infection, in the results, (1) can enhance the cell viability, (2) inhibit either PS exposure or mitochondrial membrane potential (MMP) loss, (3) knock down the Bad expression, and (4) reduce the virus titer. Furthermore, VP3 and a series truncated forms were constructed for expression in ZLE cells. We found that the VP3 death motif may be located between 80-158 amino residues. Then, we found the VP3 may have a tyrosine kinase activity by immunoprecipitation assay between 3 hour and 12 hour post-infection and VP3 may reserve as a substrate for either tyrosine or serine/threonine kinases, but their functions are still further examined.
Taken our results suggest that VP3 may play a crucial role on pro-apoptotic function, which may up-regulate the pro-apoptotic gene Bad and induces the loss of MMP in CHSE-214 cells with IPNV infection. This finding may thus provide an important insight into the understanding of IPNV pathogenesis and disease control.
戴君如,以傳染性胰臟壞死病毒之VP3反意核醣核酸表現抑制本病毒所誘發之細胞凋亡。台灣大學漁業科學研究所碩士論文,台北,2000。
邱謙禮,傳染性胰臟壞死病毒外殼蛋白VP3造成斑馬魚肝臟細胞株凋亡分子機制之研究。成功大學生物科技研究所碩士論文,台南,2006。
陳栢均,傳染性胰臟壞死病毒造成宿主細胞大眼鮭魚胚胎細胞株因粒線體膜電位消失而凋亡之研究。成功大學生物科技研究所碩士論文,台南,2007。
Allnutt F. C., Bowers R. M., Rowe C. G., Vakharia V. N., LaPatra S. E., and Dhar A. K. Antigenicity of infectious pancreatic necrosis virus VP2 subviral particles expressed in yeast. Vaccine. 25: 4880-4888. (2007).
Anne R., Richard C. M., and Philip E. B. Viruses and apoptosis. Annu. Rev. Microbiol. 53: 577-628. (1999).
Armando F. A, Siomara M., and Jose F. R. The major antigenic protein of infectious bursal disease virus, VP2, is an apoptotic inducer. J. Virol. 71: 8014-8018. (1997).
Arnoult D. Apoptosis-associated mitochondrial outer membrane permeabilization assays. Methods. 44: 229-234. (2008).
Ashkenazi A., and Dixit V. M. Death receptors: Signaling and modulation. Science. 281: 1305-1308. (1998).
Benali F. N. L., Chami M., Houel L., De Giorgi F., Vernejoul F., Lagorce D., Buscail L., Bartenschlager R., Ichas F., Rizzuto R., and Paterlini-Bréchot P. Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene. 24: 4921-4933. (2005).
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. (1976).
Brown D. G., Sun X. M., and Cohen G. M. Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior internucleosomal fragmentation. J. Biol. Chem. 268: 3037-3039. (1993).
Calvert J. G., Nagy E., Soler M., and Dobos P. Characterization of the VPg-dsRNA linkage of infectious pancreatic necrosis virus. J. Gen. Virol. 72: 2563-2567. (1991).
Chen S. P., Yang H. L., Her G. M. , Lin H. Y., Jeng M. F., Wu J. L., and Hong J. R. NNV induces phosphatidylserine exposure and loss of mitochondrial membrane potential in secondary necrotic cells, both of which are blocked by bongkrekic acid. Virology. 347: 379-391. (2006).
Christie K. E., Havarstein L. S., Diupvik H. O., Ness S., and Endresen C. Characterization of a new serotype of infectious pancreatic necrosis virus isolated from Atlantic salmon. Arch. Virol. 103: 167-177. (1988).
Costa-Junior H. M., Hamaty F. C., da Silva F. R., Einicker L. M., da Silva M. H., and Persechini P. M. Apoptosis-inducing factor of a cytotoxic T cell line: involvement of a secretory phospholipase A2. Cell Tissue Res. 324: 255-266. (2006).
Cregan S. P., Dawson V. L., and Slack R. S. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene. 23: 2785-2796. (2004).
David R. C. RNA learns from antisense. Biochemistry. 3: 8-11. (2007).
del Peso L., González-García M., Page C., Herrera R., and Nuñez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 278: 687-689. (1997 ).
Deng J., Xia W., and Hung M. C. Adenovirus 5 E1A-mediated tumor suppression associated with E1A-mediated apoptosis in vivo. Oncogene. 17: 2167-2175. (1998).
Dobos P. Virus-specific protein synthesis in cells infected by infectious pancreatic necrosis virus. J. Virol. 21: 242-258. (1977 a).
Dobos P., and Rowe D. Peptide map comparison of infectious pancreatic necrosis virus-specific polypeptides. J. Virol. 24: 805-820. (1977 b).
Dobos P. and Roberts T. E. The molecular biology of infectious pancreatic necrosis virus: a review. Can. J. Microbiol. 29: 377-384. (1983).
Dong C., Weng S., Shi X., Xu X., Shi N., and He J. Development of a mandarin fish Siniperca chuatsi fry cell line suitable for the study of infectious spleen and kidney necrosis virus (ISKNV). Virus Res. Epub ahead of print. (2008).
Duncan R., Nagy E., Krell P. J., and Dobos P. Synthesis of the infectious pancreatic necrosis virus polyproteinm detedtion of a segment A coin-gregion. J. Virol. 61: 3655-3664. (1987).
Erwig L. P., and Henson P. M. Immunological consequences of apoptotic cell phagocytosis. Am J Pathol. 17: 2-8. (2007).
Espinoza J. C, Hjalmarsson A., Everitt E., and Kuznar J. Temporal and subcellular localization of infectious pancreatic necrosis virus structural proteins. Arch Virol. 145: 739-748. (2000).
Fadeel B., and Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J. Intern. Med. 258: 479–517. (2005).
Fang X., Yu S., Eder A., Mao M., Bast R. C. J., Boyd D., and Mills G. B. Regulation of BAD phosphorylation at serine 112 by the Ras-MAPK pathway. Oncogene. 18: 6635-6640. (1999).
Fischer R., Baumert T., and Blum H. E. Hepatitis C virus infection and apoptosis. World J Gastroenterol. 13: 4865-4872. (2007).
Fridholm H., Eliasson L., and Everitt E. Immunogenicity properties of authentic and heterologously synthesized structural protein VP2 of infectious pancreatic necrosis virus. Viral Immunol. 20: 635-648. (2007).
Gerschenson L. E., and Rotello R. J. Apoptosis: a different type of cell death. FASEB J. 6: 2450-2455. (1992).
Gottesman S. Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet. 21: 399-404. (2005).
Green D. R., and Reed J. C. Mitochondria and apoptosis. Science. 281: 1309-1312. (1998).
Green D. R., Knight R. A., Melino G., Finazzi A. A., and Orrenius S. Ten years of publication in cell death. Cell Death Differ. 11: 2–3. (2004).
Guido K., Bruno D., and Michele R. R. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Pathol. 60: 619-642. (1998).
Håvarstein L. S., Kalland K. H., Christie K. E., and Endresen C. Sequence of the large double-stranded RNA segment of the N1 strain of infectious pancreatic necrosis virus: a comparison with other Birnaviridae. J. Gen. Virol. 71: 299-308. (1990).
Hedrick R. P., Fryer J. L., Chen S. N. and Kou G. H. Characteristics of four birnavirus isolated from fish in Taiwan. FishPathol. 18: 91-97. (1983).
Hill B. J. and Way K. Serological classification of fish and shellfish birnaviruses. In abstract of Fish Interactional Conference of the European Association of Fish pathologists. pp.10. (1983).
Hirashima A., Sawaki S., Inokuchi Y., and Inouye M. Engineering of the mRNA-interfering complementary RNA immune system against viral infection. Proc Natl Acad Sci. 83: 7726-7730. (1986).
Hsieh Y. C., Chang M. S., Chen J. Y., Yen J. J., Lu I. C., Chou C. M., and Huang C. J. Cloning of zebrafish BAD, a BH3-only proapoptotic protein, whose overexpression leads to apoptosis in COS-1 cells and zebrafish embryos. Biochem Biophys Res Commun. 304: 667-675. (2003).
Hsu Y. L., Chen B. S., and Wu J. L. Comparison of RNAs and polypeptides of infectious pancreatic necrosis virus from eel and rainbow trout. J. Gen. Virol. 70: 2233-2239. (1989).
Hong J. R., Lin T. L., Hsu Y. L., and Wu J. L. Induction of apoptosis and secondary necrosis by infectious pancreatic necrosis virus in fish embryonic cells. J. Fish. Diseases. 21: 463-467. (1998 a)
Hong J. R., Lin T. L., Hsu Y. L. and Wu J. L. Apoptosis precedes necrosis of fish cell line with infectious pancreatic necrosis virus infection. Virology. 250: 76-84. (1998 b).
Hong J. R., Lin T. L., Yang J. Y., Hsu Y. L., and Wu J. L. Dynamics of nontypical apoptotic morphological changes visualized by green fluorescent protein in living cells with infectious pancreatic necrosis virus infection. J Virol. 73: 5056-5063. (1999 a).
Hong J. R., Hsu Y. L., and Wu J. L. Infectious pancreatic necrosis virus induces apoptosis due to down-regulation of survival factor MCL-1 protein expression in a fish cell line. Virus Res. 63: 75-83. (1999 b).
Hong, J. R., Gong, H.Y., and Wu, J. L. IPNV VP5, a novel anti-apoptosis gene of the Bcl-2 family, regulates Mcl-1 and viral protein expression. Virology. 295: 217-229. (2002 a)
Hong J. R., and Wu J. L. Induction of apoptosis death in cell via Bad gene expression by infectious pancreatic necrosis virus infection. Cell Death Differ. 9: 113-124. (2002 b).
Hong J. R., Huang L. J., and Wu J. L. Aquatic birnavirus induces apoptosis through activated caspase-8 and -3 in a zebrafish cell line. J Fish Dis. 28: 133-140. (2005).
Hong J. R., Guan B. J., Her G. M., Evensen O., Santi N., and Wu J. L. Aquatic birnavirus infection activates the transcription factor NF-kappaB via tyrosine kinase signalling leading to cell death. J Fish Dis. 31: 451-460. (2008).
Imajoh M., Hirayama T., and Oshima S. Frequent occurrence of apoptosis is not associated with pathogenic infectious pancreatic necrosis virus (IPNV) during persistent infection. Fish Shellfish Immunol. 18: 163-177. (2005).
Kerr J. F. R. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J. Pathol Bacteriol. 90: 419-435. (1965).
Kerr J. F. R. Shrinkage necrosis: a distinct mode of cellular death. J. Pathol. 105: 13-20. (1971).
Kerr J. F. R., Wyllie A. H., and Currie A. R. Apoptosis:a basic biological phenomenon with wide ranging implications in tissue kinetics. Br. J. cancer. 26: 1790-1794. (1972).
Kibenge F. S. B., Dhillom A. S., and Pussell R. G. Biochemistry and immunology of infectious bursal disease virus. J. Gen. Virol. 69: 1757-1775. (1988).
Kim R., Emi M., Tanabe K., Murakami S., Uchida Y., and Arihiro K. Regulation and interplay of apoptotic and non-apoptotic cell death. J. Pathol. 208: 319–326. (2006).
Kochan G., Gonzalez D., and Rodriguez J. F. Characterization of the RNA-binding activity of VP3, a major structural protein of Infectious bursal disease virus. Arch. Virol. 148: 723-744. (2003).
Kroemer G. The proto-oncogene Bcl-2 and its role in regulation apoptosis. Nature Med. 3: 614-620. (1997).
Krysko D. V., and Vandenabeele P. From regulation of dying cell engulfment to development of anti-cancer therapy. Cell Death Differ. 15: 29-38. (2008).
Kuo R. L., Kung S. H., Hsu Y. Y., and Liu W. T. Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol. 83:1367-1376. (2002).
Kuribayashi K., and El-Deiry W. S. Regulation of programmed cell death by the p53 pathway. Adv. Exp. Med. Biol. 615: 201-221. (2008).
Lam K. M. Morphological evidence of apoptosis in chickens infected with infectious bursal disease virus. J. Comp. Pathol. 116: 367-377. (1995).
Le B. M., Rouy I,. and Brenner C. The modulation of inter-organelle cross-talk to control apoptosis. Med Chem. 2: 1-12. (2006).
Lee J., Feldman A. R., Delmas B., and Paetzel M. Crystal structure of the VP4 protease from infectious pancreatic necrosis virus reveals the acyl-enzyme complex for an intermolecular self-cleavage reaction. J Biol Chem. 24: 24928-24937. (2007).
Liu M., and Vikram N. V. Nonstructural protein of infectious bursal disease virus inhibits apoptosis at the early stage of virus infection. J. Virol. 80: 3369-3377. (2006).
Lizcano J. M., Morrice N., and Cohen P. Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Biochem. J. 349: 547-557. (2000).
Lo C. F., Hong Y. W., Huang S. Y., and Wang C. H. The characteristics of the virus isolated from the gill of clam, Meretrix lusoria. FishPathol. 23: 147-154. (1988).
Ludwig S., Pleschka S., Planz O., and Wolff T. Ringing the alarm bells: signalling and apoptosis in influenza virus infected cells. Cell Microbiol. 8: 375-386. (2006).
Luther H. P. Role of endogenous antisense RNA in cardiac gene regulation. J Mol Med. 83: 26-32. (2005).
MacDonald R. D. and Gower D. A. Genomic and phenotypic divergence among three serotypes of aquatic birnaviruses (infectious pancreatic necrosis virus). Virology. 114: 187-195. (1981).
Magnelli L., Cinelli M., Turchetti A., and Chiarugi V. P. Bcl-2 overexpression abolishes early calcium waving preceding apoptosis in NIH-3T3 murine fibroblasts. Biochem. Biophys. Res. Commun. 204: 84-90. (1994).
Majno G., and Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 146: 3-15. (1995).
Moss L. H. and Gravell M. Ultrastructure sequential development of infectious pancreatic necrosis virus. J. Virol. 3: 52-58. (1969).
Nash K. L., Alexander G. J., Lever A. M. Inhibition of hepatitis B virus by lentiviral vector delivered antisense RNA and hammerhead ribozymes. J Viral Hepat. 12: 346-356. (2005).
Okazaki Y., Furuno M. and Kasukawa T. Analysis of the mouse transcriptome based on functional annotation of 60, 770 full-length cDNAs. Nature. 420: 563-573. (2002).
Osato N., Yamada H., and Satoh K. Antisense transcripts with rice full-length cDNAs. Genome Biol. 5: R5 (2003).
Packard B. Z., and Komoriya A. Intracellular protease activation in apoptosis and cell-mediated cytotoxicity characterized by cell-permeable fluorogenic protease substrates. Cell Res. 18: 238-247. (2008).
Pannu N., and Nadim M. K. An overview of drug-induced acute kidney injury. Crit. Care. Med. 36: 216-223. (2008).
Pedersen T., Skjesol A., and Jørgensen J. B. VP3, a structural protein of infectious pancreatic necrosis virus, interacts with RNA-dependent RNA polymerase VP1 and with double-stranded RNA. J Virol. 81: 6652-6663. (2007).
Petit S., Lejal N., Huet J. C., and Delmas B. Active residues and viral substrate cleavage sites of the protease of the birnavirus infectious pancreatic necrosis virus. J. Virol. 74: 2057-2066. (2000).
Puthalakath H., and Strasser A. Keeping killers on a tight leash : transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 9: 505-512. (2002).
Roberts R. J., and Pearson M. D. Infectious pancreatic necrosis in Atlantic salmon Salmo salar L. J. Fish Dis. 28: 383-390. (2005).
Rock K. L., and Kono H. The inflammatory response to cell death. Annu. Rev. Pathol. 3: 99-126. (2008).
Rong Y., and Distelhorst C. W. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol. 70: 73-91. (2008).
Samali A., Gorman A. M., and Cotter T. G. Apoptosis--the story so far--. Experientia. 52: 933-941. (1996).
Sahu N. K., Shilakari G., Nayak A., Kohli D. V. Antisense technology: a selective tool for gene expression regulation and gene targeting. Curr Pharm Biotechnol. 8: 291-304. (2007).
Sattler M., Liang H., Nettesheim D., Meadows R. P., Harlan J. E., Eberstadt M., Yoon H. S., Shuker S. B., Chang B. S., Minn A. J.,Thompson C. B. and Fesik S. W. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science. 275: 983-986. (1997).
Scorrano L., and Korsmeyer S. J. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun. 304: 437-444. (2003).
Shi Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell. 9: 459–470.
Shih W. L., Hsu H. W., Liao M. H., Lee L. H., and Liu H. J. Avian reovirus sigmaC protein induces apoptosis in cultured cells. Virology. 321: 65-74. (2004).
Shwed P.S., Dobos P., Cameron L.A., Vakharia V.N. and Duncan R. Birnavirus VP1 proteins form a distinct subgroup of RNA-dependent RNA polymerases lacking a GDD motif. Virology. 296: 241-250. (2002).
Snieszko S. F., Wolf K., Camper J. E., and Pettijohn L. L. Infectious nature of pancreatic necrosis. Trans. Am. Fish Soc . 88: 289-293. (1959).
Underwood B. O., Smale C. J., Brown F., and Hill B. Relationship of a virus from Tellina tenuis to infectious pancreatic necrosis virus. J. Gen. Virol. 36: 93-109. (1977).
Villanueva R. A., Guacucano M., Pizarro J., and Sandino A. M. Inhibition of virion-associated IPNV RNA polymerase, VP1, by radiolabeled nucleotide analogs. Virus Res. 112: 132-135. (2005).
von Einem U. I., Gorbalenya A. E., Schirrmeier H., Behrens S. E., Letzel T., and Mundt E. VP1 of infectious bursal disease virus is an RNA-dependent RNA polymerase. J. Gen, Virol. 85: 2221-2229. (2004).
Walensky L. D. BCL-2 in the crosshairs: tipping the balance of life and death. Cell Death Differ. 13: 1339-1350. (2006)
Wang T. H., and Wang H. S. Apoptosis: overview and clinical significance. Formos Med Assoc. 98: 381-393. (1999).
Wolf D., Witte V., Laffert B., Blume K., Stromer E., Trapp S., d'Aloja P., Schurmann A., Baur A.S. HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med. 7: 1217-1224. (2007).
Wolf K., and Mann J. A. Pokilother vertebrate cell line and virus: a current listing for fish. Virology. 16: 168-179. (1980).
Wolf K., Snieskol S. F., Dumbar C. E., and Pyle E. Virus nature of infectious pancreatic necrosis in trout. Proc. Soc. Exp. Biol. Med. 104: 105-108. (1960).
Wood E. M., Snieskol S. F., and Yasutake W. T. Infectious Pancreatic Necrosis in Brook Trout. A. M. A. Arch. Pathol. 60: 26-28. (1955).
Wu J. L., Chang C. Y., and Hsu Y. L. Characteristics of an infectious pancreatic necrosis like virus isolated from Japanese eel (Amguolla japonica). Bulletin of the Institute of Zoology. Academia Sinica. 26: 210-214. (1987).
Yelin R., Dahary D., and Sorek R. Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol. 21:379-386. (2003).
Zecchin K. G., Seidinger A. L., Chiaratti M. R., Degasperi G. R., Meirelles F. V., Castilho R. F., Vercesi A. E. High Bcl-2/Bax ratio in Walker tumor cells protects mitochondria but does not prevent H2O2- induced apoptosis via calcineurin pathways. J Bioenerg Biomembr. 39: 186-194. (2007).
Zhang P., Vanderschuren H., Fütterer J., and Gruissem W. Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol J. 3: 385-397. (2005).