簡易檢索 / 詳目顯示

研究生: 張輔廷
Chang, Fu-ting
論文名稱: 多層電極陣列式介電泳晶片應用於微粒子操控
Multiple Electrodes Arrayed Dielectrophoretic Chip with Application on Micro-Bead Manipulation
指導教授: 李永春
Lee, Yung-chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 105
中文關鍵詞: 三維微結構微粒子介電泳
外文關鍵詞: Micro-Bead, 3D Microstructure, Dielectrophoresis
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計並完成一種具有多層電極與三維微結構的介電泳晶片,目的達成分類、捕捉、與操控微粒子之最佳效果;在製程方面,利用微機電製程建立陣列式電極與三維微結構,並以負介電泳力(Negative Dielectrophoresis force, N-DEP Force) 作為操控之媒介。有別於平面式的介電泳電極設計,本研究使用上、中、下三層電極,可以個別施加不同大小與相位的電子訊號,三維結構之部分以SU-8 製作。利用週期性的電極分布與三維結構來扭曲空間中的電場,形成縱向不均勻電場,得以捕捉與操縱懸浮於微流管道中的粒子。此外,為達到單顆粒子分離之需求,以粒子的尺寸去設計適合的光罩,製作出恰能容納單顆粒子的構造。
    理論與模擬部分,使用商用軟體模擬三種架構之介電泳力與抓取趨勢。實驗結果顯示,此晶片若在三層電極施加不同的電壓訊號 (施以相位落後),可在溶液中有效地操控乳膠粒子,並加強抓取能力,且此操控效能令晶片具有重複使用性;此外,本文也探討不同尺寸微粒子的導電性,進而了解在何種頻率下可產生最大的負介電泳力而達到最佳之抓取效果。本研究提供以介電泳力操控粒子之設計準則與製程範例。

    This study investigates new types of dielectrophoretic (DEP) chips which consist of arrayed electrodes and 3D microstructures. The goal is to optimize the sorting, trapping, and manipulating ability of beads. The underlying operational principle is based on negative-dielectrophoresis force.As different from conventional ones using only planar electrodes, these new DEP chips consist of ITO top and bottom electrodes, an arrayed Au middle electrode, and an arrayed SU-8 3D microstructure. In order to achieve single-bead manipulation, the size of the SU-8 3D microstructure array matches the size of the beads. It is shown that such a 3D structure not only
    yields a non-uniform electric field for DEP trapping but also enhances the capability of positioning and immobilization of the trapped beads.
    In theoretical analysis and simulation, Comsol Multiphysics is applied to simulate the DEP forces in these chips. In experiments, the results show the chips can successfully trap or manipulate beads by applying different electrical voltage signals with phase angles on the triple layer electrodes. In order to realize the optimum frequency to operate DEP force, we also investigate the electrical conductivity at different particle sizes.
    In summary, we fabricate new DEP chips with improving capability of sorting, trapping, and manipulating beads. The design, analysis, and fabrication processes are all discussed in details.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 IX 圖目錄 X 符號說明 XIX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究動機與目的 10 1-4 論文架構 11 第二章 介電泳原理與電雙層理論 12 2-1 介電泳力原理推導 12 2-1-1極小電偶矩之作用力 13 2-1-2 電偶矩產生之力矩 14 2-1-3 空間中任一點因電偶矩造成之電位勢 15 2-1-4 介電圓球在介電溶液中受單一方向均勻電場作用時之電偶矩 16 2-1-5介電圓球在介電溶液中之介電泳力 22 2-1-6 與頻率相依之介電泳 23 2-1-7 正負介電泳力發生之原因 24 2-1-8 CM因子與頻率之關係 27 2-2 電雙層理論與粒子導電度的關係 28 2-2-1 電雙層理論 28 2-2-2 Poisson-Boltzmann方程式 29 2-2-3 Debye-Huckel 理論 30 2-2-4 Gouy-Chapman 理論 31 2-2-5 電雙層對粒子導電度的影響 33 2-2-6 粒子導電度對CM factor的影響 33 第三章 數值軟體模擬 36 3-1 實驗架構之模擬 36 3-2 空間中介電泳力之計算 38 3-2-1 棋盤式電極之模擬 40 3-2-2 碗型結構電極之模擬 45 3-2-3 直洞結構電極之模擬 49 3-2-4 三種架構之數值模擬比較 52 3-3 三層電極施以不同電壓相位角的影響 53 3-3-1 三層電極碗型結構施以不同電壓相位角之模擬 53 3-3-2 三層電極直洞結構施以不同電壓相位角之模擬 57 3-3-3 碗型結構與直洞結構之比較 61 3-3-4 加入相位角後的介電泳力大小 62 3-3-5 模擬中舉起粒子之實際位置 63 3-3-6 模擬排出粒子之情形 65 第四章 晶片之製作與實驗架構 66 4-1 實驗晶片種類 66 4-1-1 棋盤式電極晶片 [圖4-1] 66 4-1-2 三層電極碗型結構晶片 [圖4-2] 67 4-1-3 三層電極直洞結構晶片 [圖4-3] 67 4-2 晶片製作流程 68 4-2-1 棋盤電極製作 68 4-2-1-1 金屬蒸鍍 68 4-2-1-2 微影製程 69 4-2-2 碗型三維結構製作 70 4-2-2-1 下部結構層SU-8製作 70 4-2-2-2 電極蒸鍍 71 4-2-2-3 準分子雷射加工機台 71 4-2-2-4 加工參數 72 4-2-2-5 光罩與加工路徑 72 4-2-3 直洞三維結構製作 73 4-2-3-1 電極蒸鍍 74 4-2-4 ITO電極 75 4-2-5 晶片完成圖 76 4-3實驗儀器與架構 77 4-3-1 函數產生器 (Function Generator) 77 4-3-2示波器 (Oscilloscope) 77 4-3-3注射針幫浦 (Syringe Pump) 78 4-3-4螢光顯微鏡加設DV 78 4-3-5 個人電腦 79 4-3-6 實驗架構 80 第五章 實驗結果與分析 81 5-1 以交越頻率驗證粒子在溶液裡的導電度 81 5-1-1 交越頻率 81 5-1-2 實驗結果 82 5-2以三層電極碗形結構捕捉粒子 86 5-2-1 三層電極碗型結構晶片之介電泳力分布 86 5-3以三層電極直洞結構操縱粒子 88 5-3-1 顯微鏡之架設 88 5-3-2 不同相位角之實驗結果 89 5-3-3 不同頻率之粒子上下震盪 90 5-4 比較模擬與實驗的介電泳抓取力 91 5-4-1 流體拖曳力 (Drag Force) 91 5-4-2 物理問題描述 93 5-4-3 實驗結果 94 5-4-4 比較模擬結果 95 5-5 三層電極直洞結構抓取效果 96 5-5-1 比較無介電泳力作用下之情形 98 5-5-2 介電泳力排出粒子之效果 99 5-6 比較三種晶片架構 100 第六章 結論與未來展望 101 6-1 結論 101 6-2 未來展望 102 參考文獻與書目 103

    1. H. A. Pohl, “The motion and Precipitation of Suspensoids in Divergent Electric Fields”, Journal of Applied Physics, Vol. 22, 1951.
    2. H. A. Pohl, “Some Effects of Nonuniform Fields on Dielectrics”, Journal of Applied Physics, Vol. 29, pp. 1182-1188, 1958.
    3. J. Voldman, R. A. Braff, M. Toner, M. L. Gray and M. A. Schmidt, “Holding Forces of Single-Particle Dielectrophoretic Traps”, Biophysical Journal, Vol. 80, pp. 531-541, 2001.
    4. A. Rosenthal and J. Voldman, “Dielectrophoretic Taps for Single-Particle Patterning”, Biophysical Journal, Vol. 88, pp. 2193-2205, 2005.
    5. S. Archer, T. T. Li, A. T. Evans, S. T. Britland and H. Morgan, “Cell Ractions to Dielectrophoretic Manipulation”, Biochemical and Biophysical Research Communications, Vol. 257, pp. 687-698, 1999.
    6. M. Frenea, S. P. Faure, B. L. Pioufle, P. Coquet and H. Fujita, “Positioning Living Cells on a High-density Electrode Array by Negative Dielectrophoresis”, Materials Science and Engineering C, Vol. 23, pp.597-603, 2003.
    7. J. Rousselet, G. H. Markx and R. Pethig, “Separation of Erythrocytes and Latex Beads by Dielectrophoretic Levitation and Hyperlayer field-flow Fractionation”, Colloids and Surfaces A, Vol. 140, pp. 209-216, 1998.
    8. S. W. Lee, Y. W. Kim, Y. K. Kim, “Determination of Dielectric Constant of Dielectric Particles Using Negative Dielectrophoresis,” IEEE Annual Report – Electrical Insulation and Dielectric Phenomena, pp. 241-244, 1996.
    9. T. B. Jones, “Basic Theory of Dielectrophoresis and Electrorotation” IEEE Engineering in Medicine and Biology Magazine, pp. 33-42, 2003.
    10. R. Pethig, M. S. Talary and R. S. Lee, “Enhancing Traveling-Wave Dielectrophoresis with Signal Superposition”, IEEE Engineering in Medicine and Biology Magazine, pp. 43-50, 2003.
    11. X. B. Wang, Y. Huang, F. F. Becker and P. R. C. Gascoyne, “A Unified Theory of Dielectrophoresis and Traveling Wave Dielectrophoresis”, J. Phys. D:Appl. Phys. Vol. 27, pp. 1571-1574, 1994.
    12. M. P. Hughes, R. Pethig and X. B. Wang, “Dielectrophoretic Forces on Particle in Traveling Electric Fields”, J. Phys. D:Appl. Phys. Vol. 29, pp.474-482, 1996.
    13. H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan and T. C. Tan, “Large Area Traveling Wave Dielectrophoresis Particle Separator”, J. Micromech. Microeng, Vol. 7, pp. 65-70, 1997.
    14. Qian, L., Scott. M. Kaler, K. V.I.S., Paul, R, “Integrated Planar Concentric Ring Dielectricphoretic Levitator”, J. Electrost. Vol. 55(1), pp. 65-79, 2002.
    15. E. G. Cen, C. Dalton, Y. Li, S. Adamia, L. M. Pilarski and K. V. I. S. Kaler, “A Combined Dielectrophoresis, Traveling Wave Dielectrophoresis and Electrorotation Microchip for the Manipulation and Characterization of Human Malignant Cells”, J. Microbiological Methods, Vol. 58, pp.387-401, 2004.
    16. T. B. Jones, “Electromechanics of Particles”, Cambridge University Press, 1995
    17. D. K. Cheng, “Field and Wave Electromagnetics”, Second Edition, Addison-Wesley Publishing Company Inc., 1989.
    18. C. W. Yang, “Electroosmosis in a Rectangular Microchannel with an Inhomogeneous Charged Surface”, National Taiwan University, thesis, 2004.
    19. E. Gileadi, E. Kirowa-Eisner and J. Penciner, “Interfacial electrochemistry, an experimental approach”, Addison-Wesley Publishing Company Inc., 1975.
    20. Chester T. O`Konski, “Electric Properties of Macromolecules. V. Theory of Ionic Polarization in Polyelectrolytes”, J. Phys. Chem. Vol. 64, 605-619.
    21. N. G. Green, H. Morgan, “Dielectrophoretic investigations of sub-micrometre latex spheres”, J. Phys. D: Appl. Phys. Vol. 30, 2626–2633, 1997.
    22. Manfried Durr, Jorg Kentsch, Torsten Muller, Thomas Schnelle, Martin Stelzle, “Microdevevices for Manipulation and Accumulation of Micro-and Manoparticles by Dielectrophoresis”, Electrophoresis, Vol. 24, 722-731, 2003.
    23. A. J. Goldman, R. G. Cox and H. Bernner, “Slow Viscous Motion of a Sphere Parallel to a Plane Wall-II Couette Flow”, Chemical Engineering Science, Vol. 22, pp. 653-660, 1967.
    24. K. H. Wang, “A Dielectrophoretic Single-Cell Trapping Chip with Multiple Electrodes and Arrayed 3D Microstructure”, National Cheng Kung University, thesis, 2006.

    下載圖示 校內:2008-08-20公開
    校外:2008-08-20公開
    QR CODE