簡易檢索 / 詳目顯示

研究生: 詹宜潔
Chan, Chieh-Yi
論文名稱: 牛血清白蛋白對雙十六碳鏈離子對雙親分子/親水性添加物混合系統之Langmuir單分子層行為的影響
Effects of bovine serum albumin on the Langmuir monolayer behavior of mixed dihexadecyl-chain ion pair amphiphile/hydrophilic additive systems
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 237
中文關鍵詞: 氣/液界面單分子層聚乙二醇-脂質聚乙烯吡咯烷酮蛋白質
外文關鍵詞: air/liquid interface, Langmuir monolayer, poly (ethylene glycol)-lipids, polyvinylpyrrolidone, plasma proteins
相關次數: 點閱:125下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺泡界面活性劑中的主成分dipalmitoyl phosphatidylcholine (DPPC)被認為是降低肺泡內襯液層表面張力的主要成分,但DPPC價格昂貴。利用擁有兩條雙十六碳鏈,結構與DPPC相似的hexadecyltrimethylammonium-hexadecylsulfate (HTMA-HS)進行單分子層實驗。結果顯示崩潰表面壓能達到72.0 mN/m,表示此時界面上的表面張力接近零。由上述結果發現HTMA-HS有取代DPPC做為肺泡界面活性劑之主要物質並用於治療呼吸窘迫症的潛力,但HTMA-HS容易隨albumin離開界面,導致界面上自由HTMA-HS分子的損失,使HTMA-HS的動態界面活性受到抑制。本研究分別以1,2-二棕櫚醯基-sn-甘油-3-磷酸乙醇胺-N-[(甲氧基)聚乙烯醇-1000](DPPE-PEG1000)、L-A-磷酸鹽(DPPE)及聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)為添加劑,來改善HTMA-HS易與albumin作用而從氣液界面上損失的情形。利用表面壓-面積等溫線的量測,配合螢光顯微鏡法(fluorescence microscopy, FM)探討於連續來回壓縮-擴張界面的條件下,液相中牛血清白蛋白(bovine serum albumin, BSA)對不同混合分子層動態界面活性的影響,並探討聚乙二醇(PEG)及其長度對於避免蛋白質再吸附的效果。結果顯示添加1 mol%、3 mol%及10 mol%的DPPE或DPPE-PEG1000,都無法有效減少HTMA-HS單分子層的損失率。比較HTMA-HS/DPPE/albumin、HTMA-HS/DPPE-PEG1000/albumin及文獻中HTMA-HS/DPPE-PEG2000/albumin混合系統的結果,結果顯示PEG鏈確實可以避免albumin在擴張過程的再吸附。比較DPPE-PEG1000/albumin與文獻中DPPE-PEG2000/albumin的結果,顯示當PEG鏈愈長時,albumin在擴張過程中愈不易再吸附到界面上,對albumin有愈大的排斥效應或產生愈顯著的立體障礙。由上述的結果可以歸納出PEG對分子損失的影響因素有溶解度、對混合單分子層排列的影響,以及對蛋白質的排斥效應或產生的立體障礙。較長的PEG鏈,溶解度較大,對混合單分子層的排列影響較大,使混合單分子層在壓縮過程中容易脫附,但較不平坦的表面會使albumin不易再吸附到界面上,且當albumin靠近時,對其產生的排斥行為也愈顯著。在HTMA-HS/PVP/albumin混合系統中,所添加的PVP會對albumin產生排斥效應,可以避免albumin於擴張過程中的再吸附行為,減少分子損失。但由於PVP是屬於水溶性的物質,在壓縮過程中會從界面上脫附。因此添加過多的PVP,會使在壓縮過程中,吸附在界面上的分子數減少,所以無法到達較高的表面壓,而無法減少分子損失的情形。

    In this study, the effects of bovine serum albumin (BSA) on the mixed Langmuir monolayer behavior of hexadecyltrimethylammonium-hexadecylsulfate (HTMA-HS), with dipalmitoyl phosphatidylethanolamine-polyethylene glycol 1000 (DPPE-PEG1000), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and polyvinylpyrrolidone (PVP), respectively, were investigated by the Langmuir trough approach. Cyclic compression-expansion isotherms of the monolayers were examined to elucidate the induced removal characteristic of the molecules at the air/liquid interface. For mixed monolayers of HTMA-HS with adsorbed BSA at the cyclic interface, HTMA-HS would leave the interface with BSA during the interface compression stage, causing the loss of HTMA-HS at the interface. Comparing the results of mixed HTMA-HS/DPPE-PEG1000/BSA and HTMA-HS/DPPE/BSA monolayers, it is inferred that PEG chains were helpful in preventing the readsorption of BSA during the interface expansion stage. This property can be attributed to its segmental flexibility and its polar but uncharged chemical composition. The segmental flexibility results in high degree of steric exclusion at PEG-water interfaces, which in turn leads to protein resistance. The addition of hydrophilic polymer, PVP, could reduce the inhibition effect of BSA. This is because PVP could exert repulsive force on BSA when BSA approached the interface during the interface expansion stage.

    摘要 I 誌謝 XII 總目錄 XIII 表目錄 XVII 圖目錄 XXI 符號說明 XLI 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 肺泡界面活性劑與急性呼吸窘迫症候群 3 1-2-2 蛋白質在氣/液界面上的吸附行為 6 1-2-3 氣/液界面上單分子層的行為 9 1-2-4 肺泡界面活性劑與血漿蛋白質的交互作用 13 1-2-5 蛋白質與聚乙二醇的交互作用 16 1-3 研究動機與目的 22 第二章 實驗 24 2-1 藥品 24 2-2 儀器 26 2-2-1 Langmuir槽 26 2-2-2 螢光顯微鏡 28 2-3 實驗步驟 30 2-3-1 藥品配製 30 2-3-2 Langmuir單分子層行為的分析 31 2-3-3 單分子層遲滯行為的測量 32 2-3-4 白蛋白質吸附分子層平衡表面壓的測量 32 2-3-5 白蛋白質吸附分子層遲滯行為的測量 33 2-3-6 界面活性劑/白蛋白質混合分子層遲滯行為的測量 33 2-3-7 螢光顯微鏡的操作 34 第三章 結果與討論 37 3-1 氣/液界面上單分子層的界面行為 37 3-1-1 HTMA-HS單分子層的遲滯行為及表面形態 37 3-1-2 DPPE單分子層的遲滯行為及表面形態 45 3-1-3 DPPE-PEG1000單分子層的遲滯行為及表面形態 51 3-1-4 PVP單分子層的遲滯行為及表面形態 61 3-2 氣/液界面上混合單分子層的界面行為 66 3-2-1 HTMA-HS/DPPE混合系統 66 3-2-2 HTMA-HS/DPPE-PEG1000混合系統 76 3-2-3 HTMA-HS/PVP混合系統 92 3-3 氣/液界面上白蛋白吸附分子層的界面行為 101 3-3-1 表面壓-時間吸附曲線 101 3-3-2 遲滯行為 103 3-3-3 螢光分子對吸附分子層的影響 109 3-4 氣/液界面上HTMA-HS/白蛋白混合分子層的界面行為 114 3-4-1 遲滯行為 114 3-4-2 氣/液界面上HTMA-HS/白蛋白混合分子層的表面形態 124 3-5 氣/液界面上HTMA-HS/DPPE/白蛋白混合分子層的界面行為 128 3-5-1 DPPE/白蛋白混合單分子層的遲滯行為 128 3-5-2 DPPE/白蛋白混合單分子層的表面形態 132 3-5-3 HTMA-HS/DPPE/白蛋白混合單分子層的遲滯行為 136 3-5-4 HTMA-HS/DPPE/白蛋白混合分子層的表面形態 153 3-6 氣/液界面上HTMA-HS/DPPEE-PEG1000/白蛋白混合分子層的界面行為 157 3-6-1 DPPE-PEG1000/白蛋白混合單分子層的遲滯行為 157 3-6-2 DPPE-PEG1000/白蛋白混合單分子層的表面形態 168 3-6-3 HTMA-HS/DPPE-PEG1000/白蛋白混合單分子層的遲滯行為 172 3-6-4 HTMA-HS/DPPE-PEG1000/白蛋白混合分子層的表面形態 196 3-7 氣/液界面上HTMA-HS/PVP/白蛋白混合分子層的界面行為. 200 3-7-1 PVP/白蛋白混合單分子層的遲滯行為 200 3-7-2 PVP/白蛋白混合單分子層的表面形態 200 3-7-3 HTMA-HS/PVP/白蛋白混合單分子層的遲滯行為 207 3-7-4 HTMA-HS/PVP/白蛋白混合分子層的表面形態 221 第四章 結論與建議 225 4-1 結論 225 4-2 建議 227 參考文獻 228

    Baoukina, S., L. Monticelli, H. J. Risselada, S. J. Marrink and D. P. Tieleman, “The molecular mechanism of lipid monolayer collapse,” Proceedings of the National Academy of Sciences of the United States of America, 105, 10803-10808, 2008.

    Bartucci, R., M. Pantusa, D. Marsh and L. Sportelli, “Interaction of human serum albumin with membranes containing polymer-grafted lipids: spin-label ESR studies in the mushroom and brush regimes,” Biochimica et Biophysica Acta(BBA)- Biomembranes, 1564, 237-242, 2002.

    Bourbon, J. R., “Pulmonary surfactant: biochemical, functional, regulatory, and clinical concepts,” CRC Press, 1991.

    Brancato, S. and A. Serfis, “Incorporation of blood-clotting proteins into phospholipid Langmuir monolayers:a fluorescence microscopy study,” Journal of Colloid and Interface Science, 239, 139-144, 2001.

    Cai, P., C. R. Flach and R. Mendelsohn, “An infrared reflection-absorption spectroscopy study of the secondary structure in (KL4)4K, a therapeutic agent for respiratory distress syndrome, in aqueous monolayers with phospholipids,” Biochemistry, 42, 9446-9452, 2003.

    Chang, C.-H., S.-D. Yu, T.-K. Chuang and C.-N. Liang, “Roles of γ-globulin in the dynamic interfacial behavior of mixed dipalmitoyl phosphatidylcholine/γ-globulin monolayers at air/liquid interfaces,” Journal of Colloid and Interface Science, 227, 461-468, 2000.

    Cheng, C. C. and C. H. Chang, “Retardation effect of tyloxapol on inactivation of dipalmitoyl phosphatidylcholine surface activity by albumin,” Langmuir, 16, 437-441, 2000.

    Cho, D. and M. Cornec, “Adsorptive behavior of a globular protein with a monoglyceride monolayer spread on the aqueous surface,” Korean Journal of Chemical Engineering, 16, 371-376, 1999.

    Clements, J. A., “Surface tension of lung extracts,” Experimental Biology and Medicine, 95, 170-172, 1957.

    Creuwels, L., L. M. G. vanGolde and H. P. Haagsman, “The pulmonary surfactant system:biochemical and clinical aspects,” Lung, 175, 1-39, 1997.

    Cruz, A., L.-A. Worthman, A. Serrano, C. Casals, K. Keough and J. Perez-Gil, “Microstructure and dynamic surface properties of surfactant protein SP-B/dipalmitoylphosphatidylcholine interfacial films spread from lipid-protein bilayers,” European Biophysics Journal, 29, 204-213, 2000.

    Fuchimukai, T., T. Fujiwara, A. Takahashi and G. Enhorning, “Artificial pulmonary surfactant inhibited by proteins,” Journal of Applied Physiology, 62, 429-437, 1987.

    Georgiev, G. A, C. Vassilieff, A. Jordanova. A. Tsanova and Z. Lalchev, “Foam film study of albumin inhibited lung surfactant preparations: effect of added hydrophilic polymers,” Soft Matter, 8, 12072-12079, 2012

    Goerke, J., “Pulmonary surfactant: functions and molecular composition,” Biochimica et Biophysica Acta-Molecular Basis of Disease, 1408, 79-89, 1998.

    Graham, D. and M. Phillips, “Proteins at liquid interfaces:II. adsorption isotherms,” Journal of Colloid and Interface Science, 70, 415-426, 1979.

    Gunasekara, L., W. M. Schoel, S. Schurch and M. W. Amrein, “A comparative study of mechanisms of surfactant inhibition,” Biochimica et Biophysica Acta-Biomembranes, 1778, 433-444, 2008.

    Hall, S. B., A. R. Venkitaraman, J. A. Whitsett, B. A. Holm and R. H. Notter, “Importance of hydrophobic apoproteins as constituents of clinical exogenous surfactants,” American Review of Respiratory Diease, 145, 24-30, 1992.

    Hallman, M., T. A. Merritt, T. Akino and K. Bry, “Surfactant protein A, phosphatidylcholine, and surfactant inhibitors in epithelial lining fluid: correlation with surface activity, severity of respiratory distress syndrome, and outcome in small premature infants,” American Review of Respiratory Disease, 144, 1376-1384, 1991.

    Halperin, A., “Polymer brushes that resist adsorption of model proteins:design parameters,” Langmuir, 15, 2525-2533, 1999.

    Harris, J. M., “Poly (ethylene glycol) chemistry:biotechnical and biomedical applications,” Springer Science & Business Media, 1992.

    Holm, B., “Pulmonary Surfactant:from Molecular Biology to Clinical Practice,” Elsevier, 665-684, 1992.

    Holm, B. A., G. Enhorning and R. H. Notter, “A biophysical mechanism by which plasma-proteins inhibit lung surfactant activity,” Chemistry and Physics of Lipids, 49, 49-55, 1988.

    Holm, B. A., W. D. Wang and R. H. Notter, “Multiple mechanisms of lung surfactant inhibition,” Pediatric Research, 46, 85-93, 1999.

    Jones, M. N. and D. Chapman, “Micelles, monolayers, and biomembranes,” Wiley, 1995.

    Kajiyama, T. and M. Aizawa, “New developments in construction and functions of organic thin films,” Elsevier, 1996.

    Keough, K. M. W., C. S. Parsons, P. T. Phang and M. G. Tweeddale, “Interactions between plasma-proteins and pulmonary surfactant-surface balance studies,” Canadian Journal of Physiology and Pharmacology, 66, 1166-1173, 1988.

    Kuo, R. R., C. H. Chang, Y. M. Yang and J. R. Maa, “Induced removal of dipalmitoyl phosphatidylcholine by the exclusion of fibrinogen from compressed monolayers at air/liquid interfaces,” Journal of Colloid and Interface Science, 257, 108-115, 2003.

    Leckband, D., S. Sheth and A. Halperin, “Grafted poly(ethylene oxide) brushes as nonfouling surface coatings,” Journal of Biomaterials Science, Polymer Edition 10, 1125-1147, 1999.

    Lefevre, T. and M. Subirade, “Interaction of β-lactoglobulin with phospholipid bilayers:a molecular level elucidation as revealed by infrared spectroscopy,” International Journal of Biological Macromolecules, 28, 59-67, 2000.

    Liu, Y.-L. and C.-H. Chang, “Inhibitory effects of fibrinogen on the dynamic tension-lowering activity of dipalmitoyl phosphatidylcholine dispersions in the presence of tyloxapol,” Colloid and Polymer Science, 280, 683-687, 2002.

    Lu, J. R., T. J. Su and J. Penfold, “Adsorption of serum albumins at the air/water interface,” Langmuir, 15, 6975-6983, 1999.

    MacRitchie, F., “Desorption of proteins from the air/water interface,” Journal of Colloid and Interface Science, 105, 119-123, 1985.

    MacRitchie, F. and A. Alexander, “Kinetics of adsorption of proteins at interfaces. Part I. The role of bulk diffusion in adsorption,” Journal of Colloid Science, 18, 453-457, 1963a.

    MacRitchie, F. and A. Alexander, “Kinetics of adsorption of proteins at interfaces. Part II. The role of pressure barriers in adsorption,” Journal of Colloid Science, 18, 458-463, 1963b.

    MacRitchie, F. and A. Alexander, “Kinetics of adsorption of proteins at interfaces. Part III. The role of electrical barriers in adsorption,” Journal of Colloid Science, 18, 464-469, 1963c.

    Magdassi, S., “Surface activity of proteins:chemical and physicochemical modifications,” CRC Press, 1996.

    Maiti, K., S. C. Bhattacharya, S. P. Moulik and A. K. Panda, “Effect of bovine serum albumin on the functionality and structure of catanionic surfactant at air-buffer interface,” Materials Science and Engineering. C, Materials for Biological Applications, 33, 836-843, 2013.

    Majewski, J., T. L. Kuhl, M. C. Gerstenberg, J. N. Israelachvili and G. S. Smith, “Structure of phospholipid monolayers containing poly(ethylene glycol) lipids at the air-water interface,” The Journal of Physical Chemistry B, 101, 3122-3129, 1997.

    McClellan, S. J. and E. I. Franses, “Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin,” Colloids and Surfaces B: Biointerfaces, 28, 63-75, 2003.

    Miller, N. J., A. D. Postle, S. Orgeig, G. Koster and C. B. Daniels, “The composition of pulmonary surfactant from diving mammals,” Respiratory Physiology and Neurobiology, 152, 152-168, 2006.

    Nag, K., J. G. Munro, K. Inchley, S. Schurch, N. O. Petersen and F. Possmayer, “SP-B refining of pulmonary surfactant phospholipid films,” American Journal of Physiology-Lung Cellular and Molecular Physiology, 277, L1179-L1189, 1999.

    Nakahara, H., S. Lee, G. Sugihara, C.-H. Chang and O. Shibata, “Langmuir monolayer of artificial pulmonary surfactant mixtures with an Amphiphilic peptide at the Air/Water enterface:comparison of new preparations with surfacten (Surfactant TA),” Langmuir, 24, 3370-3379, 2008.

    Notter, R. H., “Lung surfactants:basic science and clinical applications,” Marcel Dekker, 2000.

    PastranaRios, B., S. Taneva, K. M. W. Keough, A. J. Mautone and R. Mendelsohn, “External reflection absorption infrared spectroscopy study of lung surfactant proteins SP-B and SP-C in phospholipid monolayers at the air/water interface,” Biophysical Journal, 69, 2531-2540, 1995.

    Perez-Gil, J. and K. M. W. Keough, “Interfacial properties of surfactant proteins,” Biochimica et Biophysica Acta-Molecular Basis of Disease, 1408, 203-217, 1998.

    Piknova, B., V. Schram and S. B. Hall, “Pulmonary surfactant:phase behavior and function,” Current Opinion in Structural Biology, 12, 487-494, 2002.

    Rahmati, K., J. Koifman and V. Tsoukanova, “Two-step pattern in the kinetics of protein adsorption ontopoly(ethylene glycol)-grafted phospholipid monolayers,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 321, 181-188, 2008.

    Serrano, A. G. and J. Perez-Gil, “Protein-lipid interactions and surface activity in the pulmonary surfactant system,” Chemistry and Physics of Lipids, 141, 105-118, 2006.

    Szleifer, I. “Polymers and proteins:interactions at interfaces,” Current Opinion in Solid State and Materials Science, 2, 337-344, 1997.

    Tabak, S. and R. Notter, “Effect of plasma proteins on the dynamic π-A characteristics of saturated phospholipid films,” Journal of Colloid and Interface Science, 59, 293-300, 1977.

    Taneva, S. G. and K. M. Keough, “Dynamic surface properties of pulmonary surfactant proteins SP-B and SP-C and their mixtures with dipalmitoylphosphatidylcholine,” Biochemistry, 33, 14660-14670, 1994.

    Tripp, B. C., J. J. Magda and J. D. Andrade, “Adsorption of globular proteins at the air/water interface as measured via dynamic surface tension: concentration dependence, mass-transfer considerations, and adsorption kinetics,” Journal of Colloid and Interface Science, 173, 16-27, 1995.

    van Aken, G. A. and M. T. Merks, “Adsorption of soluble proteins to dilating surfaces,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 114, 221-226, 1996.

    Veldhuizen, E. J. A. and H. P. Haagsman, “Role of pulmonary surfactant components in surface film formation and dynamics,” Biochimica et Biophysica Acta-Biomembranes, 1467, 255-270, 2000.

    Veldhuizen, R., K. Nag, S. Orgeig and F. Possmayer, “The role of lipids in pulmonary surfactant,” Biochimica et Biophysica Acta-Molecular Basis of Disease, 1408, 90-108, 1998.

    von Nahmen, A., M. Schenk, M. Sieber and M. Amrein, “The structure of a model pulmonary surfactant as revealed by scanning force microscopy,” Biophysical journal, 72, 463-469, 1997.

    Wang, Z. D., S. B. Hall and R. H. Notter, “Dynamic surface-activity of films of lung surfactant phospholipids, hydrophobic proteins, and neutral lipids,” Journal of Lipid Research, 36, 1283-1293, 1995.

    Warriner, H. E., J. Ding, A. J. Waring and J. A. Zasadzinski, “A concentration-dependent mechanism by which serum albumin inactivates replacement lung surfactants,” Biophysical Journal, 82, 835-842, 2002.

    Wen, X. Y. and E. I. Franses, “Adsorption of bovine serum albumin at the air/water interface and its effect on the formation of DPPC surface film,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 190, 319-332, 2001.

    Wustneck, R., J. Perez-Gil, N. Wustneck, A. Cruz, V. B. Fainerman and U. Pison, “Interfacial properties of pulmonary surfactant layers,” Advances in Colloid and Interface Science, 117, 33-58, 2005.

    Ybert, C., W. X. Lu, G. Moller and C. M. Knobler, “Collapse of a monolayer by three mechanisms,” Journal of Physical Chemistry B, 106, 2004-2008, 2002.

    Yin, C.-L. and C.-H. Chang, “Infrared spectroscopy analysis of mixed DPPC/fibrinogen layer behavior at the air/liquid interface under a continuous compression-expansion condition,” Langmuir, 22, 6629-6634, 2006.

    Zasadzinski, J. A., J. Ding, H. E. Warriner, F. Bringezu and A. J. Waring, “The physics and physiology of lung surfactants,” Current Opinion in Colloid and Interface Science, 6, 506-513, 2001.

    Zhao, J., D. Vollhardt, G. Brezesinski, S. Siegel, J. Wu, J. B. Li and R. Miller, “Effect of protein penetration into phospholipid monolayers: morphology and structure,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 171, 175-184, 2000.

    Zuo, Y. Y., R. A. W. Veldhuizen, A. W. Neumann, N. O. Petersen and F. Possmayer, “Current perspectives in pulmonary surfactant-inhibition, enhancement and evaluation,” Biochimica et Biophysica Acta-Biomembranes, 1778, 1947-1977, 2008.

    張庭瑜, “牛血漿白蛋白對雙十六碳鏈離子對雙親分子/界面活性添加物混合系統之Langmuir單分子層行為的影響,” 國立成功大學化學工程學系碩士論文, 2015。

    陳宥廷, “牛血漿蛋白對dipalmitoyl phosphatidylcholine/雙十六碳鏈離子對雙親分子之混合Langmuir單分子層行為的影響,” 國立成功大學化學工程學系碩士論文, 2013。

    下載圖示 校內:2018-09-01公開
    校外:2018-09-01公開
    QR CODE